

UFABC MATHEMATICAL BIOLOGY

...

Prof. Juliana Berbert

ELAM - UFABC - 27/08/2018

SUMMARY

- ► Modelling approaches
- ► Theory and scales
- ► Individuals
- ► Populations
- ► Communities
- ► Epidemics
- ► More!

MODELLING APPROACHES

000

Fundamental Mechanisms

To understand the causal relationships at a general level.

Mathematical Modeling

mechanistic

phenomenological

Observed/predicted patterns

Statistical Modeling

To find factors that shape the empirical data.

MATHEMATICAL MODELING

MATHEMATICAL MODELS AND METHODS

MATHEMATICAL MODELS AND METHODS

Variable	Space	Time	Stochasticity	Model type(s)
Discrete	No	Discrete	No Yes	— Markov chain
		Continuous	No Yes	 Markov process
	Discrete	Discrete	No Yes	— Multidimensional Markov chain, discrete-time IBM on grid or patch network, discrete-time SPOM
		Continuous	No Yes	— Multidimensional Markov process, continuous-time IBM on a grid or patch network, continuous-time SPOM
	Continuous	Discrete	No Yes	— Discrete-time individual-based model in continuous space
		Continuous	No Yes	— Spatiotemporal point process
Continuous	No	Discrete	No Yes	Difference equation Stochastic difference equation
		Continuous	No Yes	Differential equation, integral equation Stochastic differential equation
	Discrete	Discrete	No Yes	System of difference equations System of stochastic difference equations
		Continuous	No Yes	System of differential equations System of stochastic differential equations
	Continuous	Discrete	No Yes	Integro-difference equation Stochastic integro-difference equation
		Continuous	No Yes	Partial differential equation, differential equation with convolution Stochastic partial differential equation

CHOOSING THE PROPER MODEL

- ► Interpretation of mathematical concepts in favor of biology.
- ► Identify the level of generality.
- ► Evaluate the extent to which there is empirical support.

CONSIDER THE SCALE

- ► Time scale: ecological or evolutionary
- ► Spatial scale

THEORETICAL Ecology Examples

Movement Ecology

INDIVIDUALS

Individuals' movement...

- ► Why move?
- ► Where to move?
- ► How to move?
- ► When?

Movement Ecology

► Where to move?

INDIVIDUALS

Does spatial memory influence the movements decision?

IBM Simulations PDE Numerical integration

Berbert and Fagan Ecological Complexity 2012 (12) 1-12. Berbert and Lewis Ecological Complexity 2018 (33) 41-48.

INDIVIDUAL-BASED MODEL

Combining movement decisions and landscape dynamics

- Avoid the last visited sites, or
- ► Follow the migration route.

 Spatial configuration changes from year to year, according to the persistence level.

INDIVIDUAL-BASED MODEL

INDIVIDUAL-BASED MODEL

Combining random searches and individuals spatial memory

$$\begin{cases} \frac{\partial w}{\partial t} = \alpha u(1-w) - \frac{w}{\mu} ;\\ \frac{\partial u}{\partial t} = -\frac{\partial}{\partial x} \left[u \left(2M_2 \frac{\partial}{\partial x} \log(1-w) - M_1 \right) \right] + \underbrace{M_2 \frac{\partial^2 u}{\partial x^2}}_{\text{memory induced advection}} + \underbrace{M_2 \frac{\partial^2 u}{\partial x^2}}_{\text{diffusion}} \end{cases}$$

Continuous space and time

Combining random searches and individuals spatial memory

$$\begin{cases} \frac{\partial w}{\partial t} = \beta u(1-w) - w ;\\\\ \frac{\partial u}{\partial t} = -2\frac{\partial}{\partial x} \left[u \left(\frac{\partial}{\partial x} \log(1-w) \right) \right] + \frac{\partial^2 u}{\partial x^2} .\end{cases}$$

Individuals

Population

POPULATION DYNAMICS

- ► Births
- ► Deaths
- ► Migration
- ► Resources

POPULATION DYNAMICS

- ► Births
- ► Deaths
- ► Migration
- ► Resources

POPULATION DYNAMICS

- ► Births
- ► Deaths
- ► Migration
- ► Resources
- Structured populations
- Space explicitly modeled
- Habitat loss and fragmentation

COMMUNITIES

- ► Interactions
- ► Resource-consumer
- ► Competition
- ► Predation

COMMUNITIES

► Predation

$$\begin{split} \frac{dV}{dt} &= \alpha V - \beta V P \ , \\ \frac{dP}{dt} &= \delta V P - \gamma P \ . \end{split}$$

COMMUNITIES

- ► Interactions
- ► Resource-consumer
- ► Competition
- Predation
- Structured populations
- Space explicitly modeled
- ► Handling time

. . .

► Habitat loss and fragmentation

EPIDEMICS

- ► Interaction
- ► Compartments

EPIDEMICS

► Interaction

► Compartments

EPIDEMICS

- ► Interaction
- ► Compartments

- Structured populations
- Space explicitly modeled
- ► Vector

• • •

► Public Policies

Evolutionary ecology

Cellular and molecular dynamics

Genetics

Tumor growth

Phylogenetic trees

To what extent can we describe the biological world?

Which tools can we use to explore causes, mechanisms and patterns of the biological world? With what degree of specificity and generality?

- Ran Nathan et al. PNAS 2008;105:19052-19059
- Ovaskainen, Knegt, Mar Delgado, 2016, "Quantitative Ecology and Evolutionary Biology Integrating models with data"
- Berbert and Fagan, Ecological Complexity 2012 (12) 1-12.
- Berbert and Lewis, Ecological Complexity, 2018 (33) 41-48.
- Ginzburg et al. Ecological Modelling 2007 (207) 356–362
- Eugene Wigner, "The Unreasonable Effectiveness of Mathematics in the Natural Sciences"
- Gerda de Vries et al. 2006, "A course in Mathematical Biology"

Obrigada!