On Degenerations of Lie Superalgebras

Ma. Isabel Hernández

CONACYT - CIMAT Mérida

Escola Latino Americana de Matematica

Universidade Federal do ABC, Santo André, S.P., Brasil, 2018

Plan of the Talk

Preliminaries

Algebras
Lie Algebras
The Variety $\mathcal{L}ie_n$

Lie superalgebras

Superalgebras Lie Superalgebras The Variety $\mathcal{LS}^{(m,n)}$

Convention

Throughout this work all vector spaces are finite dimensional over a field $\mathbb{F}=\mathbb{R}$ or $\mathbb{F} = \mathbb{C}$.

Definition

An \mathbb{F} -algebra is a vector space A with a bilinear map

$$\cdot: A \times A \rightarrow A$$
.

$$1 \cdot \alpha = \alpha \cdot 1 = \alpha$$
, for all $\alpha \in A$.

$$End(V) = \{T : V \to V \mid T \text{ is linear}\}$$

Definition

An \mathbb{F} -algebra is a vector space A with a bilinear map

$$\cdot: A \times A \rightarrow A$$
.

We say that A has a unit element if there is an element $1 \in A$ such that

$$1 \cdot \alpha = \alpha \cdot 1 = \alpha, \quad \text{ for all } \alpha \in A.$$

Example

- $ightharpoonup \mathbb{F}[x]$ is a commutative, associative algebra with unit.
- Let V a vector space.

$$\mathsf{End}(\mathsf{V}) = \{\mathsf{T} : \mathsf{V} \to \mathsf{V} \mid \mathsf{T} \mathsf{ is linear}\}\$$

is an associative algebra with unit (non-commitative)

Definition

An \mathbb{F} -algebra is a vector space A with a bilinear map

$$\cdot: A \times A \rightarrow A$$
.

We say that A has a unit element if there is an element $1 \in A$ such that

$$1 \cdot \alpha = \alpha \cdot 1 = \alpha, \quad \text{ for all } \alpha \in A.$$

Example

- $ightharpoonup \mathbb{F}[x]$ is a commutative, associative algebra with unit.
- Let V a vector space.

$$\mathsf{End}(\mathsf{V}) = \{\mathsf{T} : \mathsf{V} \to \mathsf{V} \mid \mathsf{T} \mathsf{ is linear}\}\$$

is an associative algebra with unit (non-commitative)

Definition

An \mathbb{F} -algebra is a vector space A with a bilinear map

$$\cdot: A \times A \rightarrow A$$
.

We say that A has a unit element if there is an element $1 \in A$ such that

$$1 \cdot \alpha = \alpha \cdot 1 = \alpha$$
, for all $\alpha \in A$.

Example

- $ightharpoonup \mathbb{F}[x]$ is a commutative, associative algebra with unit.
- ► Let V a vector space.

$$\mathsf{End}(\mathsf{V}) = \{\mathsf{T} : \mathsf{V} \to \mathsf{V} \mid \mathsf{T} \mathsf{ is linear}\}$$

is an associative algebra with unit (non-commitative).

- $\blacktriangleright \ C^{\mathfrak{n}}(\mathbb{R}): \{f: \mathbb{R} \to \mathbb{R} \mid f \text{ is n-times differentiable}\}, \ \mathfrak{n} \in \mathbb{N} \cup \{0\}.$
- ▶ ℝ³ with the cross product is a non-commutative, non-associative algebra without unit. In fact:

$$(e_1 \times e_2) \times e_2 \neq e_1 \times (e_2 \times e_2)$$

- ▶ $C^n(\mathbb{R})$: {f : $\mathbb{R} \to \mathbb{R}$ | f is n-times differentiable}, $n \in \mathbb{N} \cup \{0\}$.
- $ightharpoonup \mathbb{R}^3$ with the cross product is a non-commutative, non-associative algebra without unit. In fact:

$$(e_1 \times e_2) \times e_2 \neq e_1 \times (e_2 \times e_2)$$

- ▶ $C^n(\mathbb{R})$: {f : $\mathbb{R} \to \mathbb{R}$ | f is n-times differentiable}, $n \in \mathbb{N} \cup \{0\}$.
- $ightharpoonup \mathbb{R}^3$ with the cross product is a non-commutative, non-associative algebra without unit. In fact:

$$(e_1 \times e_2) \times e_2 \neq e_1 \times (e_2 \times e_2).$$

Observation. An Algebra A is

 \blacktriangleright commutative if xy = yx, for all $x, y \in A$, i.e.,

$$P_1(x,y) = xy - yx = 0, \ \forall \ x, y \in A.$$

associative if

$$P_2(x, y, z) = (xy)z - x(yz) = 0, \ \forall \ x, y, z \in A.$$

Notation. Let V be an n-dimensional \mathbb{F} -vector space, and P_1, \ldots, P_n polynomial identities.

$$Alg_n(P_1, \ldots, P_r)$$

is the variety of algebras defined by P_1, \ldots, P_n .

Observation. An Algebra A is

ightharpoonup commutative if xy = yx, for all $x, y \in A$, i.e.,

$$P_1(x,y)=xy-yx=0, \ \forall \ x,y\in A.$$

associative if

$$P_2(x, y, z) = (xy)z - x(yz) = 0, \ \forall \ x, y, z \in A.$$

Notation. Let V be an n-dimensional \mathbb{F} -vector space, and P_1, \ldots, P_n polynomial identities.

$$Alg_n(P_1, \ldots, P_r)$$

is the variety of algebras defined by P_1, \ldots, P_n

Observation. An Algebra A is

ightharpoonup commutative if xy = yx, for all $x, y \in A$, i.e.,

$$P_1(x,y)=xy-yx=0, \ \forall \ x,y\in A.$$

associative if

$$P_2(x, y, z) = (xy)z - x(yz) = 0, \ \forall \ x, y, z \in A.$$

Notation. Let V be an n-dimensional \mathbb{F} -vector space, and P_1, \ldots, P_n polynomial identities.

$$Alg_n(P_1, \ldots, P_r)$$

is the variety of algebras defined by P_1, \ldots, P_n .

Observation. An Algebra A is

 \triangleright commutative if xy = yx, for all $x, y \in A$, i.e.,

$$P_1(x,y)=xy-yx=0, \ \forall \ x,y\in A.$$

associative if

$$P_2(x, y, z) = (xy)z - x(yz) = 0, \ \forall \ x, y, z \in A.$$

Notation. Let V be an n-dimensional \mathbb{F} -vector space, and P_1, \ldots, P_n polynomial identities.

$$Alg_n(P_1, \ldots, P_r)$$

Observation. An Algebra A is

ightharpoonup commutative if xy = yx, for all $x, y \in A$, i.e.,

$$P_1(x,y) = xy - yx = 0, \ \forall \ x,y \in A.$$

associative if

$$P_2(x, y, z) = (xy)z - x(yz) = 0, \ \forall \ x, y, z \in A.$$

Notation. Let V be an n-dimensional \mathbb{F} -vector space, and P_1, \ldots, P_n polynomial identities.

$$\mathcal{A}lg_n(P_1,\ldots,P_r)$$

is the variety of algebras defined by P_1, \ldots, P_n .

Definition

An algebra \mathfrak{g} , with product $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, is called a Lie algebra if:

Definition

An algebra \mathfrak{g} , with product $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, is called a Lie algebra if:

- (i) [x, y] = -[y, x] (antisymmetry),

Definition

An algebra \mathfrak{g} , with product $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, is called a Lie algebra if:

- (i) [x, y] = -[y, x] (antisymmetry),
- (ii) [[x, y,], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity)

for all $x, y, z \in \mathfrak{g}$.

Definition

An algebra \mathfrak{g} , with product $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, is called a Lie algebra if:

- (i) [x, y] = -[y, x] (antisymmetry),
- (ii) [[x, y,], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity)

for all $x, y, z \in \mathfrak{g}$.

Remark. (i) is equivalent to the identity: $x^2 = 0$, From (ii) it follows that [...]

Definition

An algebra \mathfrak{g} , with product $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, is called a Lie algebra if:

- (i) [x, y] = -[y, x] (antisymmetry),
- (ii) [[x, y,], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity)

for all $x, y, z \in \mathfrak{g}$.

Remark. (i) is equivalent to the identity: $x^2 = 0$, From (ii) it follows that $[\cdot, \cdot]$ is non-associative. Moreover, a Lie algebra is abelian if and only if $[\cdot, \cdot] = 0$.

- ▶ Every vector space V is a Lie algebra taking $[\cdot, \cdot] = 0$.It is called the abelian Lie algebra.
- ▶ The cross product (\mathbb{R}^3, \times) is a Lie algebra

Definition

An algebra \mathfrak{g} , with product $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, is called a Lie algebra if:

- (i) [x, y] = -[y, x] (antisymmetry),
- (ii) [[x, y,], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity)

for all $x, y, z \in \mathfrak{g}$.

Remark. (i) is equivalent to the identity: $x^2 = 0$, From (ii) it follows that $[\cdot, \cdot]$ is non-associative. Moreover, a Lie algebra is abelian if and only if $[\cdot,\cdot]=0$.

Definition

An algebra \mathfrak{g} , with product $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, is called a Lie algebra if:

- (i) [x, y] = -[y, x] (antisymmetry),
- (ii) [[x, y,], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity)

for all $x, y, z \in \mathfrak{g}$.

Remark. (i) is equivalent to the identity: $x^2 = 0$, From (ii) it follows that $[\cdot, \cdot]$ is non-associative. Moreover, a Lie algebra is abelian if and only if $[\cdot, \cdot] = 0$.

- ▶ Every vector space V is a Lie algebra taking $[\cdot, \cdot] = 0$. It is called the abelian Lie algebra.
- ▶ The cross product (\mathbb{R}^3, \times) is a Lie algebra.

Definition

An algebra \mathfrak{g} , with product $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, is called a Lie algebra if:

- (i) [x, y] = -[y, x] (antisymmetry),
- (ii) [[x, y,], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity)

for all $x, y, z \in \mathfrak{g}$.

Remark. (i) is equivalent to the identity: $x^2 = 0$, From (ii) it follows that $[\cdot, \cdot]$ is non-associative. Moreover, a Lie algebra is abelian if and only if $[\cdot, \cdot] = 0$.

- ▶ Every vector space V is a Lie algebra taking $[\cdot, \cdot] = 0$.It is called the abelian Lie algebra.
- ▶ The cross product (\mathbb{R}^3, \times) is a Lie algebra

Definition

An algebra \mathfrak{g} , with product $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, is called a Lie algebra if:

- (i) [x, y] = -[y, x] (antisymmetry),
- (ii) [[x, y,], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity)

for all $x, y, z \in \mathfrak{g}$.

Remark. (i) is equivalent to the identity: $x^2 = 0$, From (ii) it follows that $[\cdot, \cdot]$ is non-associative. Moreover, a Lie algebra is abelian if and only if $[\cdot, \cdot] = 0$.

- ▶ Every vector space V is a Lie algebra taking $[\cdot, \cdot] = 0$.It is called the abelian Lie algebra.
- ▶ The cross product (\mathbb{R}^3, \times) is a Lie algebra.

Examples

▶ The General Linear Lie Algebra $\mathfrak{gl}(V)$. Let V an \mathbb{F} -vector space. Define:

$$[\mathsf{T},\mathsf{S}] = \mathsf{T} \circ \mathsf{S} - \mathsf{S} \circ \mathsf{T}, \quad \mathsf{T},\mathsf{S} \in \mathsf{End}(V)$$

$$\mathfrak{sl}(V) = \{ \mathsf{T} \in \mathsf{End}(V) : \mathsf{tr}(\mathsf{T}) = \mathsf{0} \} \subset \mathfrak{gl}(V).$$

$$\mathfrak{gl}(V)_{\mathcal{B}} = \{ T \in \mathsf{End}(V) : \mathcal{B}(\mathsf{T}(\mathfrak{u}), \nu) + \mathcal{B}(\mathfrak{u}, \mathsf{T}(\nu)) = 0 \}$$

Examples

▶ The General Linear Lie Algebra $\mathfrak{gl}(V)$. Let V an \mathbb{F} -vector space. Define:

$$[T, S] = T \circ S - S \circ T, \quad T, S \in End(V).$$

$$\mathfrak{sl}(V) = \{T \in \mathsf{End}(V) : \mathsf{tr}(T) = 0\} \subset \mathfrak{gl}(V).$$

$$\mathfrak{gl}(V)_{\mathcal{B}} = \{ T \in \mathsf{End}(V) : \mathcal{B}(\mathsf{T}(\mathfrak{u}), \nu) + \mathcal{B}(\mathfrak{u}, \mathsf{T}(\nu)) = 0 \}$$

Examples

▶ The General Linear Lie Algebra $\mathfrak{gl}(V)$. Let V an \mathbb{F} -vector space. Define:

$$[T, S] = T \circ S - S \circ T, \quad T, S \in End(V).$$

Notation: $\mathfrak{gl}(V) = (\operatorname{End}(V), [\cdot, \cdot]).$

$$\mathfrak{sl}(V) = \{T \in \mathsf{End}(V) : \mathsf{tr}(T) = 0\} \subset \mathfrak{gl}(V).$$

$$\mathfrak{gl}(V)_{\mathcal{B}} = \{ T \in \mathsf{End}(V) : \mathcal{B}(\mathsf{T}(\mathfrak{u}), \nu) + \mathcal{B}(\mathfrak{u}, \mathsf{T}(\nu)) = 0 \}$$

Examples

▶ The General Linear Lie Algebra $\mathfrak{gl}(V)$. Let V an \mathbb{F} -vector space. Define:

$$[T, S] = T \circ S - S \circ T, \quad T, S \in End(V).$$

Notation: $\mathfrak{gl}(V) = (\mathsf{End}(V), [\cdot, \cdot]).$

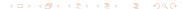
▶ The Special Linear Lie Algebra $\mathfrak{sl}(V)$.

$$\mathfrak{sl}(V) = \{T \in \mathsf{End}(V) : \mathsf{tr}(T) = 0\} \subset \mathfrak{gl}(V).$$

▶ Let $\mathcal{B}: V \times V \to \mathbb{F}$ be a bilinear form.

$$\mathfrak{gl}(V)_{\mathfrak{B}} = \{\mathsf{T} \in \mathsf{End}(V) : \mathfrak{B}(\mathsf{T}(\mathfrak{u}), \mathfrak{v}) + \mathfrak{B}(\mathfrak{u}, \mathsf{T}(\mathfrak{v})) = 0\}$$

s a subalgebra of $\mathfrak{gl}(V)$.



Examples

▶ The General Linear Lie Algebra $\mathfrak{gl}(V)$. Let V an \mathbb{F} -vector space. Define:

$$[T, S] = T \circ S - S \circ T, \quad T, S \in End(V).$$

Notation: $\mathfrak{gl}(V) = (\mathsf{End}(V), [\cdot, \cdot]).$

▶ The Special Linear Lie Algebra $\mathfrak{sl}(V)$.

$$\mathfrak{sl}(V) = \{T \in \mathsf{End}(V) : \mathsf{tr}(T) = 0\} \subset \mathfrak{gl}(V).$$

▶ Let $\mathcal{B}: V \times V \to \mathbb{F}$ be a bilinear form.

$$\mathfrak{gl}(V)_{\mathcal{B}} = \{ T \in \mathsf{End}(V) : \mathcal{B}(\mathsf{T}(\mathfrak{u}), \nu) + \mathcal{B}(\mathfrak{u}, \mathsf{T}(\nu)) = 0 \}$$

s a subalgebra of $\mathfrak{gl}(V)$.

Examples

▶ The General Linear Lie Algebra $\mathfrak{gl}(V)$. Let V an \mathbb{F} -vector space. Define:

$$[\mathsf{T},\mathsf{S}] = \mathsf{T} \circ \mathsf{S} - \mathsf{S} \circ \mathsf{T}, \quad \mathsf{T},\mathsf{S} \in \mathsf{End}(\mathsf{V}).$$

Notation: $\mathfrak{gl}(V) = (\operatorname{End}(V), [\cdot, \cdot]).$

► The Special Linear Lie Algebra st(V).

$$\mathfrak{sl}(V) = \{T \in \mathsf{End}(V) : \mathsf{tr}(T) = 0\} \subset \mathfrak{gl}(V).$$

▶ Let $\mathcal{B}: V \times V \to \mathbb{F}$ be a bilinear form.

$$\mathfrak{gl}(V)_{\mathfrak{B}} = \{T \in \mathsf{End}(V) : \mathfrak{B}(\mathsf{T}(\mathfrak{u}), \nu) + \mathfrak{B}(\mathfrak{u}, \mathsf{T}(\nu)) = 0\}$$

is a subalgebra of $\mathfrak{gl}(V)$.

Definition

A morphism of Lie algebras $\phi : \mathfrak{g} \to \mathfrak{h}$ is a linear map such that

$$\phi[x, y]_{\mathfrak{g}} = [\phi(x), \phi(y)]_{\mathfrak{h}}, \quad x, y \in \mathfrak{g}$$

$$\mathcal{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Definition

A morphism of Lie algebras $\varphi:\mathfrak{g}\to\mathfrak{h}$ is a linear map such that

$$\phi[x,y]_{\mathfrak{g}} = [\phi(x),\phi(y)]_{\mathfrak{h}}, \quad x,y \in \mathfrak{g}.$$

The Lie algebras ${\mathfrak g}$ and ${\mathfrak h}$ are isomorphic if there exists a bijective morphism ${\mathfrak p}:{\mathfrak g}\to{\mathfrak h}.$

Example

 $lackbox{$lackbox{\blacktriangleright}$} (\mathbb{R}^3, imes) \simeq \mathfrak{gl}(\mathbb{R}^2)_{\mathfrak{B}}, \mbox{ where } \mathfrak{B}: \mathbb{R}^2 imes \mathbb{R}^2
ightarrow \mathbb{R}$

$$\mathcal{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

▶ Let V a vector space. A morphism $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ is called a representation.

Definition

A morphism of Lie algebras $\phi : \mathfrak{g} \to \mathfrak{h}$ is a linear map such that

$$\phi[x,y]_{\mathfrak{g}} = [\phi(x),\phi(y)]_{\mathfrak{h}}, \quad x,y \in \mathfrak{g}.$$

The Lie algebras g and h are isomorphic if there exists a bijective morphism $\phi: \mathfrak{g} \to \mathfrak{h}$.

$$\mathcal{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Definition

A morphism of Lie algebras $\phi : \mathfrak{g} \to \mathfrak{h}$ is a linear map such that

$$\phi[x,y]_{\mathfrak{g}} = [\phi(x),\phi(y)]_{\mathfrak{h}}, \quad x,y \in \mathfrak{g}.$$

The Lie algebras g and h are isomorphic if there exists a bijective morphism $\phi: \mathfrak{g} \to \mathfrak{h}$.

Example

 \blacktriangleright $(\mathbb{R}^3, \times) \simeq \mathfrak{ql}(\mathbb{R}^2)_{\mathcal{B}}$, where $\mathcal{B}: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$

$$\mathcal{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Definition

A morphism of Lie algebras $\phi : \mathfrak{g} \to \mathfrak{h}$ is a linear map such that

$$\phi[x,y]_{\mathfrak{g}} = [\phi(x),\phi(y)]_{\mathfrak{h}}, \quad x,y \in \mathfrak{g}.$$

The Lie algebras g and h are isomorphic if there exists a bijective morphism $\phi: \mathfrak{g} \to \mathfrak{h}$.

Example

 \blacktriangleright $(\mathbb{R}^3, \times) \simeq \mathfrak{ql}(\mathbb{R}^2)_{\mathcal{B}}$, where $\mathcal{B}: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$

$$\mathcal{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Lie Algebras

Definition

A morphism of Lie algebras $\phi : \mathfrak{g} \to \mathfrak{h}$ is a linear map such that

$$\phi[x,y]_{\mathfrak{g}} = [\phi(x),\phi(y)]_{\mathfrak{h}}, \quad x,y \in \mathfrak{g}.$$

The Lie algebras g and h are isomorphic if there exists a bijective morphism $\phi: \mathfrak{g} \to \mathfrak{h}$.

Example

 \blacktriangleright $(\mathbb{R}^3, \times) \simeq \mathfrak{gl}(\mathbb{R}^2)_{\mathcal{B}}$, where $\mathcal{B}: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$

$$\mathcal{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

▶ Let V a vector space. A morphism $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ is called a representation.

Associative \to Lie

Example

Let (A, \cdot) be an associative algebra. Define a new product by

$$[a, b] = a \cdot b - b \cdot a, \ a, b \in A.$$

Example

Let (A,\cdot) be an associative algebra. Define a new product by

$$[a,b] = a \cdot b - b \cdot a, \ a,b \in A.$$

Then, $A^- = (A, [\cdot, \cdot])$ is a Lie algebra.

Theorem (Poincaré-Birkhoff-Witt)

Let ${\mathfrak g}$ be a Lie algebra, then ${\mathfrak g}$ is isomorphic to ${\mathbb A}^-$ for some associative algebra A.

Associative W Lie

Example

Let (A,\cdot) be an associative algebra. Define a new product by

$$[a, b] = a \cdot b - b \cdot a, \ a, b \in A.$$

Then, $A^- = (A, [\cdot, \cdot])$ is a Lie algebra.

Theorem (Poincaré-Birkhoff-Witt)

Let $\mathfrak g$ be a Lie algebra, then $\mathfrak g$ is isomorphic to A^- for some associative algebra A.

Associative \leftrightarrow Lie

Example

Let (A, \cdot) be an associative algebra. Define a new product by

$$[a, b] = a \cdot b - b \cdot a, \ a, b \in A.$$

Then, $A^- = (A, [\cdot, \cdot])$ is a Lie algebra.

Associative \land lie

Example

Let (A, \cdot) be an associative algebra. Define a new product by

$$[a, b] = a \cdot b - b \cdot a, \ a, b \in A.$$

Then, $A^- = (A, [\cdot, \cdot])$ is a Lie algebra.

Theorem (Poincaré-Birkhoff-Witt)

Let \mathfrak{g} be a Lie algebra, then \mathfrak{g} is isomorphic to A^- for some associative algebra \boldsymbol{A} .

Let \mathfrak{g} be a Lie algebra with product $[\cdot, \cdot]$, and let $\{e_1, \ldots, e_n\}$ be a basis for \mathfrak{g} .

Notice that

$$[x, y] = \sum_{i,j} x_i y_j [e_i, e_j], \quad x, y \in \mathfrak{g}.$$

Write

$$[e_{i}, e_{j}] = \sum_{k=1}^{n} c_{ij}^{k} e_{k}.$$
 $i, j \in \{i, ..., n\}$

Definition

The set $\{c_i^k\}_{i=1}^n$. F is called the set of structure constants of \mathfrak{g} respect to the basis $\{e_i\}_{i=1}^n$.

Let $\mathfrak g$ be a Lie algebra with product $[\cdot,\cdot]$, and let $\{e_1,\ldots,e_n\}$ be a basis for $\mathfrak g$. Notice that:

$$[x,y] = \sum_{i,j} x_i y_j [e_i, e_j], \quad x, y \in \mathfrak{g}.$$

Write

$$[e_i, e_j] = \sum_{k=1}^n c_{ij}^k e_k, \quad i, j \in \{i, \dots, n\}.$$

Definition

The set $\{c_{ij}^k\} \subset F$ is called the set of structure constants of \mathfrak{g} respect to the basis $\{e_i\}_{i=1}^n$.

Let $\mathfrak g$ be a Lie algebra with product $[\cdot,\cdot]$, and let $\{e_1,\ldots,e_n\}$ be a basis for $\mathfrak g$. Notice that:

$$[x,y] = \sum_{i,j} x_i y_j [e_i, e_j], \quad x, y \in \mathfrak{g}.$$

Write

$$[e_i, e_j] = \sum_{k=1}^n c_{ij}^k e_k.$$
 $i, j \in \{i, ..., n\}.$

Definition

The set $\{e_i\}_{i=1}^n$. F is called the set of structure constants of \mathfrak{g} respect to the basis $\{e_i\}_{i=1}^n$.

Let \mathfrak{g} be a Lie algebra with product $[\cdot,\cdot]$, and let $\{e_1,\ldots,e_n\}$ be a basis for \mathfrak{g} . Notice that:

$$[x,y] = \sum_{i,j} x_i y_j [e_i, e_j], \quad x, y \in \mathfrak{g}.$$

Write

$$[e_i, e_j] = \sum_{k=1}^n c_{ij}^k e_k.$$
 $i, j \in \{i, ..., n\}.$

Definition

The set $\{c_{ij}^k\}\subset F$ is called the set of structure constants of \mathfrak{g} respect to the basis $\{e_i\}_{i=1}^n$.

Remark. Notice that

► From the skew symmetry:

$$c_{ij}^k + c_{ji}^k = \textbf{0}, \quad \text{ for all } i,j,k \in \{1,\dots,n\}$$

From the Jacobi identity;

$$\sum_{l=1}^{n} c_{ij}^{l} c_{lk}^{m} + c_{ki}^{l} c_{lj}^{m} + c_{jk}^{l} c_{li}^{m} = 0,$$

for all $i, j, k, m \in \{1, \dots, n\}$.

$$\mathsf{g} \longleftrightarrow (c^\mathrm{k}_{\mathrm{i}\mathrm{i}}) \in \mathbb{F}^{rac{\mathrm{n}^3 - \mathrm{n}^2}{2}}$$

Remark. Notice that

From the skew symmetry:

$$c_{ij}^k + c_{ji}^k = \textbf{0}, \quad \text{ for all } i,j,k \in \{1,\dots,n\}.$$

From the Jacobi identity;

$$\sum_{l=1}^{n} c_{ij}^{l} c_{lk}^{m} + c_{ki}^{l} c_{lj}^{m} + c_{jk}^{l} c_{li}^{m} = 0,$$

for all $i, j, k, m \in \{1, ..., n\}$.

$$\mathfrak{g} \longleftrightarrow (c_{ii}^k) \in \mathbb{F}^{rac{n^3-n^2}{2}}$$

Remark. Notice that

From the skew symmetry:

$$c_{ij}^k + c_{ji}^k = \textbf{0}, \quad \text{ for all } i,j,k \in \{1,\dots,n\}.$$

From the Jacobi identity:

$$\sum_{l=1}^{n} c_{ij}^{l} c_{lk}^{m} + c_{ki}^{l} c_{lj}^{m} + c_{jk}^{l} c_{li}^{m} = 0,$$

for all i, j, k, $m \in \{1, ..., n\}$.

$$\mathfrak{g} \longleftrightarrow (c_{ii}^k) \in \mathbb{F}^{rac{n^3-n^2}{2}}$$

Remark. Notice that

► From the skew symmetry:

$$c_{ij}^k + c_{ji}^k = \textbf{0}, \quad \text{ for all } i,j,k \in \{1,\dots,n\}.$$

From the Jacobi identity;

$$\sum_{l=1}^{n} c_{ij}^{l} c_{lk}^{m} + c_{ki}^{l} c_{lj}^{m} + c_{jk}^{l} c_{li}^{m} = 0,$$

for all $i, j, k, m \in \{1, \dots, n\}$.

$$\mathfrak{g} \longleftrightarrow (c_{ij}^k) \in \mathbb{F}^{\frac{n^3-n^2}{2}}$$

The Variety $\mathcal{L}ie_n$

lf

(i)
$$P_1((x_{ij}^k)) = x_{ij}^k + x_{ji}^k$$
,

(ii)
$$P_2((x_{ij}^k)) = \sum_{l=1}^n x_{ij}^l x_{lk}^m + x_{ki}^l x_{lj}^m + x_{jk}^l x_{li}^m$$
,

then

$$\mathcal{L}ie_n = \mathcal{A}lg_n(P_1, P_2) \subset A^{n^3}$$

is a variety where every point represent a Lie algebra.

Structure Constants in general

Let V be an n-dimensional \mathbb{F} -vector space and let $\{e_1,\ldots,e_n\}$ be a fixed basis for V. Given an algebra $A = (V, \cdot)$ we write

$$e_i \cdot e_j = \sum_{k=1}^n x_{ij}^k e_k, \quad i, j = 1, \dots, n,$$

Structure Constants in general

Let V be an n-dimensional \mathbb{F} -vector space and let $\{e_1,\ldots,e_n\}$ be a fixed basis for V. Given an algebra $A = (V, \cdot)$ we write

$$e_i \cdot e_j = \sum_{k=1}^n x_{ij}^k e_k, \quad i, j = 1, \dots, n,$$

 $\{x_{ij}^k\} \subset \mathbb{F}$ is the set of structure constants of A respect to the basis $\{e_1, \ldots, e_n\}$.

The Variety $Alg_n(P_1, \ldots, P_r)$

Let $A = (V, \cdot)$ be an algebra defined by the polynomial identities P_1, \ldots, P_r . Then its set of structure constants must satisfy these identities.

$$\left\{ \begin{array}{ll} \text{Algebras over } V \\ \text{satisfying } P_1, \ldots, P_r \end{array} \right\} \quad \longleftrightarrow \quad \mathcal{A}lg_n(P_1, \ldots, P_r) \subset \mathbb{A}^{n^3} \quad \text{affine variety}$$

$$(A, \cdot) \qquad \longleftrightarrow \qquad (x_{\mathfrak{i}_1}^k)$$

The Variety $Alg_n(P_1, \ldots, P_r)$

Let $A = (V, \cdot)$ be an algebra defined by the polynomial identities P_1, \ldots, P_r . Then its set of structure constants must satisfy these identities.

$$\left\{ \begin{array}{ll} \text{Algebras over } V \\ \text{satisfying } P_1, \ldots, P_r \end{array} \right\} \quad \longleftrightarrow \quad \mathcal{A}lg_n(P_1, \ldots, P_r) \subset \mathbb{A}^{n^3} \quad \text{affine variety}$$

$$(A, \cdot) \qquad \longleftrightarrow \qquad (x_{ii}^k)$$

Given a \mathbb{F} -vector space V with fixed basis $\{e_i\}_{i=1}^n$, we have

$$\left\{\begin{array}{l} \text{Algebras over } V \\ \text{satisfying } P_1, \ldots, P_r \end{array}\right\} \longleftrightarrow \mathcal{Alg}_{\mathfrak{n}}(P_1, \ldots, P_r) \subset \mathbb{A}^{\mathfrak{n}^3}$$

Preliminaries The Variety \mathcal{L} i e_n

What happens if we change the basis of V?

Lemma

There is an action of $G = GL(\mathbb{F}^n)$ on $\mathcal{L}ie_n$ given by "change of basis"

$$g \cdot [\cdot, \cdot] = [\cdot, \cdot]' = g[g^{-1}(\cdot), g^{-1}(\cdot)]$$

Lemma

There is an action of $G = GL(\mathbb{F}^n)$ on $\mathcal{L}ie_n$ given by "change of basis"

$$g \cdot [\cdot, \cdot] = [\cdot, \cdot]' = g[g^{-1}(\cdot), g^{-1}(\cdot)].$$

Lemma

There is an action of $G = GL(\mathbb{F}^n)$ on $\mathcal{L}ie_n$ given by "change of basis"

$$g \cdot [\cdot, \cdot] = [\cdot, \cdot]' = g[g^{-1}(\cdot), g^{-1}(\cdot)].$$

Lemma

There is an action of $G = GL(\mathbb{F}^n)$ on $\mathcal{L}ie_n$ given by "change of basis"

$$g \cdot [\cdot, \cdot] = [\cdot, \cdot]' = g[g^{-1}(\cdot), g^{-1}(\cdot)].$$

where

- The G-orbits are in one-to-one correspondence with the isomorphism classes.

Lemma

There is an action of $G = GL(\mathbb{F}^n)$ on $\mathcal{L}ie_n$ given by "change of basis"

$$g \cdot [\cdot, \cdot] = [\cdot, \cdot]' = g[g^{-1}(\cdot), g^{-1}(\cdot)].$$

where

- The G-orbits are in one-to-one correspondence with the isomorphism classes.
- (ii) $\mathsf{Stab}_{\mathsf{G}}([\cdot,\cdot]) \longleftrightarrow \mathsf{Aut}([\cdot,\cdot]).$

(Recall $G = GL(\mathbb{F}^n)$) Given the action "change of basis"

$$G \times \mathcal{L}ie_n \to \mathcal{L}ie_n$$

$$\mathfrak{h}\in\overline{\mathsf{G}\cdot\mathfrak{g}}$$

(Recall $G = GL(\mathbb{F}^n)$) Given the action "change of basis"

$$G \times \mathcal{L}ie_n \rightarrow \mathcal{L}ie_n$$

- To find the G-orbits.

$$\mathfrak{h}\in\overline{G\cdot\mathfrak{g}}$$

(Recall $G = GL(\mathbb{F}^n)$) Given the action "change of basis"

$$G \times \mathcal{L}ie_n \to \mathcal{L}ie_n$$

- To find the G-orbits.
- (ii) To find the Zariski closure of every G-orbit.

$$\mathfrak{h}\in\overline{G\cdot\mathfrak{g}}$$

(Recall $G = GL(\mathbb{F}^n)$) Given the action "change of basis"

$$G \times \mathcal{L}ie_n \rightarrow \mathcal{L}ie_n$$

- (i) To find the G-orbits.
- (ii) To find the Zariski closure of every G-orbit.

Definition

Let $\mathfrak{g},\mathfrak{h}\in\mathcal{L}ie_n$. We say that \mathfrak{g} degenerates to \mathfrak{h} ($\mathfrak{g}\to\mathfrak{h}$) if

$$\mathfrak{h}\in\overline{G\cdot\mathfrak{g}}$$

$$GL(\mathbb{F}^n) \times \mathcal{L}ie_n \to \mathcal{L}ie_n$$

$$\mathbb{F}e_1 + \mathbb{F}e_2$$
 with:

$$\mathfrak{a}_0$$
: $[e_1, e_2] = 0$.

$$\mathfrak{a}_1$$
: $[e_1, e_2] = e_1$.

$$\mathfrak{a}_1 o \mathfrak{a}_0$$
.

$$GL(\mathbb{F}^n) \times \mathcal{L}ie_n \to \mathcal{L}ie_n$$

$$\mathfrak{a}_0 \colon [e_1, \ e_2] = 0.$$

$$\mathfrak{a}_1$$
: $[e_1, e_2] = e_1$.

$$a_1 \rightarrow a_0$$
.

$$GL(\mathbb{F}^n) \times \mathcal{L}ie_n \to \mathcal{L}ie_n$$

- For n = 1 there exist only one orbit: $\mathbb{F}e$ with [e, e] = 0.

$$\mathfrak{a}_0$$
: $[e_1, e_2] = 0$.

$$\mathfrak{a}_1$$
: $[e_1, e_2] = e_1$.

$$\mathfrak{a}_1 o \mathfrak{a}_0$$
.

$$GL(\mathbb{F}^n) \times \mathcal{L}ie_n \to \mathcal{L}ie_n$$

- For n = 1 there exist only one orbit: $\mathbb{F}e$ with [e, e] = 0.
- For n = 2, there exist two orbits:

$$\mathbb{F}e_1 + \mathbb{F}e_2$$
 with:

$$\mathfrak{a}_0$$
: $[e_1, e_2] = 0$.

$$\mathfrak{a}_1$$
: $[e_1, e_2] = e_1$.

$$\mathfrak{a}_1 \to \mathfrak{a}_0$$
.

$$GL(\mathbb{F}^n) \times \mathcal{L}ie_n \to \mathcal{L}ie_n$$

- For n = 1 there exist only one orbit: $\mathbb{F}e$ with [e, e] = 0.
- For n = 2, there exist two orbits:

$$\mathbb{F}e_1 + \mathbb{F}e_2$$
 with:

$$\mathfrak{a}_0$$
: $[e_1, e_2] = 0$.

$$\mathfrak{a}_1$$
: $[e_1, e_2] = e_1$.

$$\mathfrak{a}_1 o \mathfrak{a}_0$$
.

Consider the action "change of basis"

$$GL(V) \times \mathcal{L}ie_n \rightarrow \mathcal{L}ie_n$$

For n = 3 there exist an infinite number of orbits: $\mathbb{F}e_1 + \mathbb{F}e_2 + \mathbb{F}e_3$ with:

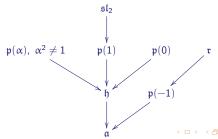
	\mathfrak{sl}_2	\mathfrak{su}_2	r	$\mathfrak{q}(\beta)$	$\mathfrak{p}(\alpha)$	h	a
$[e_2, e_3]$	e_1	e_1	$-(e_1 + e_3)$	$e_1 - \beta e_3$	αe ₃	0	0
$[e_3, e_1]$	e ₂	e_2	0	0	0	0	0
$[e_1, e_2]$	e ₃	$-e_3$	e_1	$\beta e_1 + e_3$	e_1	e ₃	0

with $\alpha, \beta \in \mathbb{R}$. Over \mathbb{C} : $\mathfrak{sl}_2 \simeq \mathfrak{su}_2$ and $\mathfrak{r} \simeq \mathfrak{q}(\beta)$.

Example: Lie Algebras with $\mathbb{F} = \mathbb{C}$

[D. Burde and C. Steinhoff, 1998] For n = 3.

	\mathfrak{sl}_2	r	$\mathfrak{p}(\alpha)$	h	a
$[e_2, e_3]$	e_1	$-(e_1 + e_3)$	αe ₃	0	0
$[e_3, e_1]$	e_2	0	0	0	0
$[e_1, e_2]$	e ₃	e_1	e_1	e ₃	0



The Lie superalgebra case

Super = \mathbb{Z}_2 -graded.

$$|x|=i, \quad \text{if } x\in V_i\setminus\{0\}.$$

$$dim(V) = (m, n).$$

Super = \mathbb{Z}_2 -graded.

Definition

$$|\mathbf{x}| = \mathbf{i}, \quad \text{if } \mathbf{x} \in V_{\mathbf{i}} \setminus \{0\}.$$

$$dim(V) = (m, n).$$

Super = \mathbb{Z}_2 -graded.

Definition

- \triangleright The subspaces V_0 and V_1 are called the even and the odd parts of V, resp.

$$|x| = i$$
, if $x \in V_i \setminus \{0\}$.

$$dim(V) = (m, n)$$

Super = \mathbb{Z}_2 -graded.

Definition

- \triangleright The subspaces V_0 and V_1 are called the even and the odd parts of V, resp.
- ▶ The elements in $(V_0 \cup V_1) \setminus \{0\}$ are called homogeneous.

$$|x| = i$$
, if $x \in V_i \setminus \{0\}$.

$$dim(V) = (m, n).$$

Super = \mathbb{Z}_2 -graded.

Definition

- \triangleright The subspaces V_0 and V_1 are called the even and the odd parts of V, resp.
- ▶ The elements in $(V_0 \cup V_1) \setminus \{0\}$ are called homogeneous.
- ▶ The degree of a homogeneous element is defined as

$$|x| = i$$
, if $x \in V_i \setminus \{0\}$.

$$\dim(V) = (m, n).$$

Super = \mathbb{Z}_2 -graded.

Definition

A supervector space is a vector space $V = V_0 \oplus V_1$.

- \triangleright The subspaces V_0 and V_1 are called the even and the odd parts of V, resp.
- ▶ The elements in $(V_0 \cup V_1) \setminus \{0\}$ are called homogeneous.
- ▶ The degree of a homogeneous element is defined as

$$|x| = i$$
, if $x \in V_i \setminus \{0\}$.

If $\dim(V_0) = m$ and $\dim(V_1) = n$ we say that

$$dim(V) = (m, n).$$

Definition

A superalgebra $A = A_0 \oplus A_1$ is a supervector space with a bilinear map

$$A \times A \rightarrow A$$
 such that

$$A_iA_j\subset A_{i+j},\quad i,j\in\mathbb{Z}_2.$$

Definition

A superalgebra $A = A_0 \oplus A_1$ is a supervector space with a bilinear map $A \times A \rightarrow A$ such that

$$A_iA_j\subset A_{i+j},\quad i,j\in\mathbb{Z}_2.$$

Definition

A superalgebra $A=A_0\oplus A_1$ is a supervector space with a bilinear map $A\times A\to A$ such that

$$A_iA_j\subset A_{i+j},\quad i,j\in\mathbb{Z}_2.$$

Remark

- (i) A_0 is a subalgebra.
- (ii) A_1 is an A_0 -module.

Definition

A superalgebra $A = A_0 \oplus A_1$ is a supervector space with a bilinear map $A \times A \rightarrow A$ such that

$$A_iA_j\subset A_{i+j},\quad i,j\in\mathbb{Z}_2.$$

Remark

- (i) A_0 is a subalgebra.
- (ii) A_1 is an A_0 -module.

Example

Let $V = V_0 \oplus V_1$ be a supervector space. Let $T: V \to V$.

$$\mathsf{End}(V_0|V_1)_0 \ni \mathsf{T} \quad \Longleftrightarrow \qquad \mathsf{T} = \mathsf{X} \oplus \mathsf{Y} \leftrightarrow \begin{pmatrix} \mathsf{X} & \mathsf{0} \\ \mathsf{0} & \mathsf{Y} \end{pmatrix}, \quad \mathsf{where} \quad \begin{matrix} \mathsf{X} : V_0 \to V_0 \\ \mathsf{Y} : V_1 \to V_1 \end{matrix}$$

$$\mathsf{End}(V_0|V_1)_1\ni \mathsf{T} \iff \mathsf{T}=\mathsf{Z}\oplus W \leftrightarrow \begin{pmatrix} 0 & W \\ \mathsf{Z} & 0 \end{pmatrix}, \quad \mathsf{where} \quad \begin{matrix} \mathsf{Z}:V_0\to V_1 \\ W:V_1\to V_0 \end{matrix}$$

$$\operatorname{End}(V) = \operatorname{End}(V_0|V_1)_0 \oplus \operatorname{End}(V_0|V_1)_1$$

Example

Let $V = V_0 \oplus V_1$ be a supervector space. Let $T: V \to V$,

$$\mathsf{End}(V_0|V_1)_0 \ni \mathsf{T} \quad \Longleftrightarrow \qquad \mathsf{T} = \mathsf{X} \oplus \mathsf{Y} \leftrightarrow \begin{pmatrix} \mathsf{X} & \mathsf{0} \\ \mathsf{0} & \mathsf{Y} \end{pmatrix}, \quad \mathsf{where} \quad \begin{matrix} \mathsf{X} : V_0 \to V_0 \\ \mathsf{Y} : V_1 \to V_1 \end{matrix}$$

$$\mathsf{End}(V_0|V_1)_1\ni\mathsf{T}\iff \mathsf{T}=\mathsf{Z}\oplus W\leftrightarrow\begin{pmatrix}0&W\\\mathsf{Z}&0\end{pmatrix},\quad\mathsf{where}\quad \begin{matrix}\mathsf{Z}:V_0\to V_1\\W:V_1\to V_0\end{matrix}$$

Then

$$\operatorname{End}(V) = \operatorname{End}(V_0|V_1)_0 \oplus \operatorname{End}(V_0|V_1)_1$$

Example

Let $V = V_0 \oplus V_1$ be a supervector space. Let $T: V \to V$.

$$\mathsf{End}(V_0|V_1)_0 \ni \mathsf{T} \quad \Longleftrightarrow \qquad \mathsf{T} = \mathsf{X} \oplus \mathsf{Y} \leftrightarrow \begin{pmatrix} \mathsf{X} & \mathsf{0} \\ \mathsf{0} & \mathsf{Y} \end{pmatrix}, \quad \mathsf{where} \quad \begin{matrix} \mathsf{X} : V_0 \to V_0 \\ \mathsf{Y} : V_1 \to V_1 \end{matrix}$$

$$\mathsf{End}(V_0|V_1)_1\ni \mathsf{T} \iff \mathsf{T}=\mathsf{Z}\oplus W \leftrightarrow \begin{pmatrix} 0 & W \\ \mathsf{Z} & 0 \end{pmatrix}, \quad \mathsf{where} \quad \begin{matrix} \mathsf{Z}:V_0\to V_1 \\ W:V_1\to V_0 \end{matrix}$$

$$\operatorname{End}(V) = \operatorname{End}(V_0|V_1)_0 \oplus \operatorname{End}(V_0|V_1)$$

Example

Let $V = V_0 \oplus V_1$ be a supervector space. Let $T: V \to V$,

$$\mathsf{End}(V_0|V_1)_0 \ni \mathsf{T} \quad \Longleftrightarrow \qquad \mathsf{T} = \mathsf{X} \oplus \mathsf{Y} \leftrightarrow \begin{pmatrix} \mathsf{X} & \mathsf{0} \\ \mathsf{0} & \mathsf{Y} \end{pmatrix}, \quad \mathsf{where} \quad \begin{matrix} \mathsf{X} : V_0 \to V_0 \\ \mathsf{Y} : V_1 \to V_1 \end{matrix}$$

$$\mathsf{End}(V_0|V_1)_1\ni \mathsf{T} \iff \mathsf{T}=\mathsf{Z}\oplus W \leftrightarrow \begin{pmatrix} 0 & W \\ \mathsf{Z} & 0 \end{pmatrix}, \quad \mathsf{where} \quad \begin{matrix} \mathsf{Z}:V_0\to V_1 \\ W:V_1\to V_0 \end{matrix}$$

Then,

$$\mathsf{End}(V) = \mathsf{End}(V_0|V_1)_0 \oplus \mathsf{End}(V_0|V_1)_1$$

Example

Let $V = V_0 \oplus V_1$ be a supervector space. Define

$$\mathsf{End}(V_0|V_1)_0 \ni \mathsf{T} \quad \Longleftrightarrow \quad \ \mathsf{T} = \begin{pmatrix} \mathsf{X} & \mathsf{0} \\ \mathsf{0} & \mathsf{Y} \end{pmatrix}, \quad \text{where} \quad \begin{array}{l} \mathsf{X} : V_0 \to V_0 \\ \mathsf{Y} : V_1 \to V_1 \end{array}$$

$$\mathsf{End}(V_0|V_1)_1\ni \mathsf{T} \iff \mathsf{T}=\begin{pmatrix} 0 & W\\ \mathsf{Z} & 0 \end{pmatrix}, \quad \mathsf{where} \quad \begin{array}{c} \mathsf{Z}:V_0\to V_1\\ W:V_1\to V_0 \end{array}$$

Then

$$\mathsf{End}(V_0|V_1) := \mathsf{End}(V) = \mathsf{End}(V_0|V_1)_0 \oplus \mathsf{End}(V_0|V_1)_1,$$

and $\operatorname{End}(V_0|V_1)$ is a superalgebra with the composition of functions as product.

Example

Let $V = V_0 \oplus V_1$ be a supervector space. Define

$$\text{End}(V_0|V_1)_0 \ni \text{T} \quad \Longleftrightarrow \quad \ \, \text{T} = \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix}, \quad \text{where} \quad \begin{array}{l} X:V_0 \to V_0 \\ Y:V_1 \to V_1 \end{array}$$

$$\mathsf{End}(V_0|V_1)_1\ni \mathsf{T} \iff \mathsf{T}=\begin{pmatrix} 0 & W\\ \mathsf{Z} & 0 \end{pmatrix}, \quad \mathsf{where} \quad \begin{array}{c} \mathsf{Z}:V_0\to V_1\\ W:V_1\to V_0 \end{array}$$

Then

$$\mathsf{End}(V_0|V_1) := \mathsf{End}(V) = \mathsf{End}(V_0|V_1)_0 \oplus \mathsf{End}(V_0|V_1)_1$$
,

and $End(V_0|V_1)$ is a superalgebra with the composition of functions as product.

Definition

A Lie superalgebra is a superalgebra $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$ with product $[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g},$ where the homogeneous elements satisfy:

(i) The super skew-symmetry

$$[x, y] = -(-1)^{|x||y|}[y, x].$$

$$(-1)^{|\mathbf{x}||z|}[\![x,y]\!],z]\!]+(-1)^{|\mathbf{x}||y|}[\![y,z]\!],x]\!]+(-1)^{|y||z|}[\![z,x]\!],y]\!]=0,$$

Definition

A Lie superalgebra is a superalgebra $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$ with product $[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g},$ where the homogeneous elements satisfy:

(i) The super skew-symmetry

$$[x, y] = -(-1)^{|x||y|}[y, x].$$

(ii) The super Jacobi identity

$$(-1)^{|x||z|}[\![x,y]\!],z]\!]+(-1)^{[x][y]}[\![y,z]\!],x]\!]+(-1)^{[y][z]}[\![z,x]\!],y]\!]=0,$$

Definition

A Lie superalgebra is a superalgebra $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ with product $[\![\cdot,\cdot]\!]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, where the homogeneous elements satisfy:

(i) The super skew-symmetry

$$[x, y] = -(-1)^{|x||y|}[y, x].$$

(ii) The super Jacobi identity

$$(-1)^{|x||z|}[\![x,y]\!],z]\!]+(-1)^{[x][y]}[\![y,z]\!],x]\!]+(-1)^{[y][z]}[\![z,x]\!],y]\!]=0,$$

Notice that \mathfrak{g}_0 is a Lie algebra, and \mathfrak{g}_1 is \mathfrak{g}_0 -module.

Example

Let $V = V_0 \oplus V_1$ be a supervector space, and let $T, S \in \text{End}(V_0|V_1)$ homogeneous. Define:

$$[T, S] = T \circ S - (-1)^{|T||S|} S \circ T.$$

Then, $\mathfrak{gl}(V_0|V_1) := (\operatorname{End}(V_0|V_1), \llbracket \cdot, \cdot \rrbracket)$ is a Lie superalgebra.

if
$$T = \begin{pmatrix} X & Y \\ Z & W \end{pmatrix}$$
, then $str(T) = tr(X) - tr(W)$.

Example

Let $V=V_0\oplus V_1$ be a supervector space, and let T, $S\in \text{End}(V_0|V_1)$ homogeneous. Define:

$$[T, S] = T \circ S - (-1)^{|T||S|} S \circ T.$$

Then, $\mathfrak{gl}(V_0|V_1):=(\mathsf{End}(V_0|V_1),\llbracket\cdot,\cdot\rrbracket)$ is a Lie superalgebra.

Definition

Let $T \in End(V_0|V_1)$. Define the supertrace as follows

if
$$T = \begin{pmatrix} X & Y \\ Z & W \end{pmatrix}$$
, then $str(T) = tr(X) - tr(W)$.

Example

The superalgebra $\mathfrak{sl}(V_0|V_1)=\{\mathsf{T}\in\mathsf{End}(V_0|V_1)|\mathsf{str}(\mathsf{T})=0\}\subset\mathfrak{gl}(V_0|V_1)$

Example

Let $V = V_0 \oplus V_1$ be a supervector space, and let $T, S \in \text{End}(V_0|V_1)$ homogeneous. Define:

$$[T, S] = T \circ S - (-1)^{|T||S|} S \circ T.$$

Then, $\mathfrak{gl}(V_0|V_1) := (\operatorname{End}(V_0|V_1), \llbracket \cdot, \cdot \rrbracket)$ is a Lie superalgebra.

Definition

Let $T \in End(V_0|V_1)$. Define the supertrace as follows

if
$$T = \begin{pmatrix} X & Y \\ Z & W \end{pmatrix}$$
, then $str(T) = tr(X) - tr(W)$.

Example

The superalgebra $\mathfrak{sl}(V_0|V_1) = \{T \in \operatorname{End}(V_0|V_1) | \operatorname{str}(T) = 0\} \subset \mathfrak{gl}(V_0|V_1)$

Example

Let $V=V_0\oplus V_1$ be a supervector space, and let T, $S\in \text{End}(V_0|V_1)$ homogeneous. Define:

$$[T, S] = T \circ S - (-1)^{|T||S|} S \circ T.$$

Then, $\mathfrak{gl}(V_0|V_1):=(\text{End}(V_0|V_1),\llbracket\cdot,\cdot\rrbracket)$ is a Lie superalgebra.

Definition

Let $T \in End(V_0|V_1)$. Define the supertrace as follows

if
$$T = \begin{pmatrix} X & Y \\ Z & W \end{pmatrix}$$
, then $str(T) = tr(X) - tr(W)$.

Example

The superalgebra $\mathfrak{sl}(V_0|V_1)=\{T\in \mathsf{End}(V_0|V_1)|str(T)=0\}\subset \mathfrak{gl}(V_0|V_1)$

Definition

Let $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$ and $\mathfrak{g}'=\mathfrak{g}_0'\to\mathfrak{g}_1'$ be Lie superalgebras. A Lie superalgebra morphism $\Phi:\mathfrak{g}\to\mathfrak{g}'$ is a linear map such that

$$\Phi(\llbracket\cdot,\cdot\rrbracket_{\mathfrak{g}})=\llbracket\Phi(\cdot),\Phi(\cdot)\rrbracket_{\mathfrak{g}'}$$

Remark

 \blacktriangleright Notice that Φ is an even map, i.e.,

$$\Phi(\mathfrak{g}_0)\subset\mathfrak{g}_0'\quad\text{and}\quad\Phi(\mathfrak{g}_1)\subset\mathfrak{g}_1'.$$

▶ We can write $\Phi = T \oplus S$, where $T : g_0 \to g'_0$ is a Lie algebra morphism, and $S : g_1 \to g'_1$ is a g_0 -module morphism such that

$$S(\llbracket \cdot, \cdot \rrbracket) = \llbracket T(\cdot), S(\cdot) \rrbracket,$$

$$\mathsf{T}(\llbracket\cdot,\cdot\rrbracket)=\llbracket\mathsf{S}(\cdot),\mathsf{S}(\cdot)\rrbracket$$

Definition

Let $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$ and $\mathfrak{g}'=\mathfrak{g}_0'\to\mathfrak{g}_1'$ be Lie superalgebras. A Lie superalgebra morphism $\Phi:\mathfrak{g}\to\mathfrak{g}'$ is a linear map such that

$$\Phi(\llbracket\cdot,\cdot\rrbracket_{\mathfrak{g}})=\llbracket\Phi(\cdot),\Phi(\cdot)\rrbracket_{\mathfrak{g}'}$$

Remark

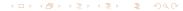
 \blacktriangleright Notice that Φ is an even map, i.e.,

$$\Phi(\mathfrak{g}_0) \subset \mathfrak{g}_0'$$
 and $\Phi(\mathfrak{g}_1) \subset \mathfrak{g}_1'$.

We can write $\Phi = T \oplus S$, where $T : \mathfrak{g}_0 \to \mathfrak{g}'_0$ is a Lie algebra morphism, and $S : \mathfrak{g}_1 \to \mathfrak{g}'_1$ is a \mathfrak{g}_0 -module morphism such that

$$S(\llbracket \cdot, \cdot \rrbracket) = \llbracket T(\cdot), S(\cdot) \rrbracket$$

$$\mathsf{T}(\llbracket \cdot, \cdot \rrbracket) = \llbracket \mathsf{S}(\cdot), \mathsf{S}(\cdot) \rrbracket.$$



Morphisms

Definition

Let $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$ and $\mathfrak{g}'=\mathfrak{g}_0'\to\mathfrak{g}_1'$ be Lie superalgebras. A Lie superalgebra morphism $\Phi:\mathfrak{g}\to\mathfrak{g}'$ is a linear map such that

$$\Phi(\llbracket \cdot, \cdot \rrbracket_{\mathfrak{g}}) = \llbracket \Phi(\cdot), \Phi(\cdot) \rrbracket_{\mathfrak{g}'}$$

Remark

 \blacktriangleright Notice that Φ is an even map, i.e.,

$$\Phi(\mathfrak{g}_0)\subset\mathfrak{g}_0'\quad\text{and}\quad\Phi(\mathfrak{g}_1)\subset\mathfrak{g}_1'.$$

We can write $\Phi = T \oplus S$, where $T : \mathfrak{g}_0 \to \mathfrak{g}'_0$ is a Lie algebra morphism, and $S : \mathfrak{g}_1 \to \mathfrak{g}'_1$ is a \mathfrak{g}_0 -module morphism such that

$$S(\llbracket \cdot, \cdot \rrbracket) = \llbracket T(\cdot), S(\cdot) \rrbracket,$$

$$\mathsf{T}(\llbracket \cdot, \cdot \rrbracket) = \llbracket \mathsf{S}(\cdot), \mathsf{S}(\cdot) \rrbracket.$$

The Variety $\mathcal{LS}^{(m,n)}$

Let $V = V_0 \oplus V_1$ be a complex (m, n)—dimensional supervector space with a fixed homogeneous basis $\{e_1, \ldots, e_m, f_1, \ldots, f_n\}$. Given a Lie superalgebra

$$\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1\longleftrightarrow(c_{ij}^k,
ho_{ij}^k,\Gamma_{ij}^k)\in\mathbb{C}^{\mathfrak{m}^3+2\mathfrak{m}\mathfrak{n}^2}$$

$$\llbracket e_i,e_j\rrbracket = \sum_{k=1}^m c_{ij}^k e_k, \quad \llbracket e_i,f_j\rrbracket = \sum_{k=1}^n \rho_{ij}^k f_k, \quad \text{and} \quad \llbracket f_i,f_j\rrbracket = \sum_{k=1}^m \Gamma_{ij}^k e_k$$

The Variety $\mathcal{LS}^{(m,n)}$

Let $V = V_0 \oplus V_1$ be a complex (m, n)—dimensional supervector space with a fixed homogeneous basis $\{e_1, \ldots, e_m, f_1, \ldots, f_n\}$. Given a Lie superalgebra structure on V, we identify $\mathfrak{g} = (V, [\cdot, \cdot])$ with its set of structure constants

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \longleftrightarrow (c_{ij}^k, \rho_{ij}^k, \Gamma_{ij}^k) \in \mathbb{C}^{m^3 + 2mn^2}$$

where

$$[\![e_i,e_j]\!] = \sum_{k=1}^m c_{ij}^k e_k, \quad [\![e_i,f_j]\!] = \sum_{k=1}^n \rho_{ij}^k f_k, \quad \text{and} \quad [\![f_i,f_j]\!] = \sum_{k=1}^m \Gamma_{ij}^k e_k.$$

Notation

 $\mathcal{LS}^{(m,n)}$ denotes the Lie superalgebra variety of dimension (m,n) over \mathbb{C} .

The Action by "Change of Basis"

Let
$$G=\mathsf{GL}_{\mathfrak{m}}(\mathbb{C})\oplus\mathsf{GL}_{\mathfrak{m}}(\mathbb{C}).$$
 We have the action $G\times\mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}\to\mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}$ given by
$$q\cdot \llbracket\cdot,\cdot\rrbracket=q\llbracket q^{-1}(\cdot),\ q^{-1}(\cdot)\rrbracket$$

An Amazing Dream

To find:

- the G-orbits,
- ▶ the Zariski closure of every G-orbit

for

$$\mathcal{LS}^{(\mathfrak{m},\mathfrak{n})},\quad \mathfrak{m},\mathfrak{n}\in\mathbb{N}$$

The reality

We studied the problem for

$$\mathcal{LS}^{(2,2)}$$

An Amazing Dream

To find:

- ▶ the G-orbits,
- ▶ the Zariski closure of every G-orbit,

for

$$\mathcal{LS}^{(\mathfrak{m},\mathfrak{n})},\quad \mathfrak{m},\mathfrak{n}\in\mathbb{N}.$$

$$\mathcal{LS}^{(2,2)}$$

An Amazing Dream

To find:

- ▶ the G-orbits,
- ▶ the Zariski closure of every G-orbit,

for

$$\mathcal{LS}^{(m,n)}$$
, $m, n \in \mathbb{N}$.

The reality

We studied the problem for

$$\mathcal{LS}^{(2,2)}.$$

The G-orbits of $\mathcal{LS}^{(2,2)}$

Theorem (Alvarez, M.A,-)

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a complex Lie superálgebra of dimension (2,2), then \mathfrak{g} is isomorphic to one and only one of the following:

```
\mathcal{LS}_0: \llbracket \cdot \cdot \cdot \rrbracket = 0.
\mathcal{LS}_1: [f_1, f_1] = e_1, [f_2, f_2] = e_2.
\mathcal{LS}_2: [f_1, f_1] = e_1, [f_2, f_2] = e_1.
\mathcal{LS}_3: [[f_1, f_1]] = e_1.
\mathcal{LS}_4: [f_1, f_2] = e_1, [f_2, f_2] = e_2.
\mathcal{LS}_5: [e_1, f_1] = f_1, [e_2, f_2] = f_2.
\mathcal{LS}_{6}(\alpha): [e_{2}, f_{1}] = f_{1}. [e_{2}, f_{2}] = \alpha f_{2}.
\mathcal{L}S_7: [e_2, f_1] = f_1, [e_2, f_2] = -f_2, [f_1, f_2] = e_1.
\mathcal{LS}_8: [e_2, f_1] = f_1, [f_2, f_2] = e_1.
\mathcal{LS}_0: [e_1, f_1] = f_1, [e_1, f_2] = f_2, [e_2, f_2] = f_1.
\mathcal{L}S_{10}: [e_2, f_1] = f_1, [e_2, f_2] = f_1 + f_2.
\mathcal{LS}_{11}: [e_2, f_2] = f_1.
\mathcal{LS}_{12}: [e_2, f_2] = f_1, [f_2, f_2] = e_1.
```

The G-orbits of $\mathcal{LS}^{(2,2)}$

```
\mathcal{LS}_{13}(\alpha, \beta): [e_1, e_2] = e_1,
                                                                                              \llbracket e_2, f_2 \rrbracket = \beta f_2.
                                                            [e_2, f_1] = \alpha f_1.
                                                                                              [e_2, f_2] = -(\alpha + 1)f_2
\mathcal{LS}_{14}(\alpha): [e_1, e_2] = e_1,
                                                            [e_2, f_1] = \alpha f_1
                       [f_1, f_2] = e_1,
                                                            \alpha \neq -\frac{1}{2}.
\mathcal{LS}_{15}(\alpha):
                [e_1, e_2] = e_1.
                                                        [e_2, f_1] = \alpha f_1
                                                                                              [e_2, f_2] = -\frac{1}{2}f_2
                       [f_1, f_1] = \delta_{-\frac{1}{2}, \alpha} e_1,
                                                           [f_2, f_2] = e_1.
                                                             [e_2, f_1] = -\frac{1}{2}f_1, \quad [e_2, f_2] = -\frac{1}{2}f_2,
\mathcal{LS}_{16}:
                       [e_1, e_2] = e_1.
                        [f_1, f_1] = e_1.
\mathcal{LS}_{17}(\alpha):
                   [e_1, e_2] = e_1,
                                                            [e_2, f_1] = \alpha f_1, [e_2, f_2] = f_1 + \alpha f_2.
                        [f_2, f_2] = \delta_{-\frac{1}{2}, \alpha} e_1.
\mathcal{LS}_{18}:
                 [e_1, e_2] = e_1.
                                                  \llbracket e_2, f_1 \rrbracket = -\frac{1}{2} f_1, \qquad \llbracket e_2, f_2 \rrbracket = f_1 - \frac{1}{2} f_2.
                 [e_1, e_2] = e_1, [e_1, f_2] = f_1, [e_2, f_1] = \alpha f_1,
\mathcal{LS}_{19}(\alpha):
                       [e_2, f_2] = (\alpha + 1)f_2, \quad [f_1, f_2] = \delta_{-1,\alpha}e_1, \quad [f_2, f_2] = 2\delta_{-1,\alpha}e_2.
\mathcal{LS}_{20}:
                      [e_1, e_2] = e_1,
                                                 [e_1, f_2] = f_1, [e_2, f_1] = -f_1,
```

where α , $\beta \in \mathbb{C}$.

- $\blacktriangleright \ \mathcal{LS}_n(\alpha) \simeq \mathcal{LS}_n(\alpha') \Leftrightarrow \alpha = \alpha', \text{ for } n \in \{6, 15, 17, 19\}$
- $\blacktriangleright \mathcal{L}S_{14}(\alpha) \simeq \mathcal{L}S_{14}(\alpha') \Leftrightarrow \text{either } \alpha = \alpha' \text{ or } \alpha + \alpha' = -1.$
- $\blacktriangleright \ \mathcal{LS}_{13}(\alpha,\beta) \simeq \mathcal{LS}_{13}(\alpha',\beta') \Leftrightarrow \{\alpha,\beta\} = \{\alpha',\beta'\}.$

Next Step

To find the orbit closure for each Lie superalgebra \mathcal{LS}_n , for $n=0,\cdots,20$.

Definition

Let $\mathfrak{a}.\mathfrak{h}\in\mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}.$ We say that \mathfrak{g} degenerates to \mathfrak{h} (denoted by $\mathfrak{g}\to\mathfrak{h})$ if

$$\mathfrak{h} \in \overline{G \cdot \mathfrak{g}} \quad (\mathsf{Zariski\ closure})$$

$$f \quad g \to h \quad and \quad h \to s$$
, then $g \to s$.

Definition

Let $\mathfrak{g},\mathfrak{h}\in\mathcal{LS}^{(m,n)}$. We say that \mathfrak{g} degenerates to \mathfrak{h} (denoted by $\mathfrak{g}\to\mathfrak{h}$) if

$$\mathfrak{h} \in \overline{G \cdot \mathfrak{g}} \quad (\mathsf{Zariski\ closure})$$

Remark

Notice that

$$\text{if}\quad \mathfrak{g}\to\mathfrak{h}\quad \text{and}\quad \mathfrak{h}\to\mathfrak{s},\quad \text{then}\quad \mathfrak{g}\to\mathfrak{s}.$$

Lemma

Let $\mathbb{C}(t)$ be the field of fractions of the polynomial ring $\mathbb{C}[t]$, and let $\mathfrak{g},\mathfrak{h}\in\mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}$. If there exists a continuous map

$$(\textbf{0},\textbf{1}] \to \mathsf{GL}_{\mathfrak{m}}(\mathbb{C}(t)) \oplus \mathsf{GL}_{\mathfrak{n}}(\mathbb{C}(t)), \quad t \mapsto g_t$$

such that
$$\lim_{t\to 0}g_t\cdot \mathfrak{g}=\mathfrak{h}$$
, then $\mathfrak{g}\to \mathfrak{h}$.

Remark

Let $\mathfrak{g} \in \mathcal{LS}^{(m,n)}$, then \mathfrak{g} degenerates to the trivial Lie superalgebra $\mathfrak{a}=(0,0,0)$ (take $t \to t^{-1}(id_m \oplus id_n)$.)

Lemma

Let $\mathbb{C}(t)$ be the field of fractions of the polynomial ring $\mathbb{C}[t]$, and let $\mathfrak{g},\mathfrak{h}\in\mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}$. If there exists a continuous map

$$(0,1] \to \mathsf{GL}_{\mathfrak{m}}(\mathbb{C}(t)) \oplus \mathsf{GL}_{\mathfrak{n}}(\mathbb{C}(t)), \quad t \mapsto g_t$$

such that $\lim_{t\to 0}g_t\cdot \mathfrak{g}=\mathfrak{h}$, then $\mathfrak{g}\to \mathfrak{h}$.

Remark

Let $\mathfrak{g}\in\mathcal{LS}^{(\mathfrak{m},n)}$, then \mathfrak{g} degenerates to the trivial Lie superalgebra $\mathfrak{a}=(0,0,0)$ (take $t\to t^{-1}(\mathrm{id}_\mathfrak{m}\oplus\mathrm{id}_\mathfrak{n})$.)

Lemma

Let $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$, $\mathfrak{h}=\mathfrak{h}_0\oplus\mathfrak{h}_1\in\mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}.$ If $\mathfrak{g}\to\mathfrak{h}$, then $\mathfrak{g}_0\to\mathfrak{h}_0.$

Definition

Let
$$\mathfrak{g} = \left\{ c_{ij}^k, \rho_{ij}^k, \Gamma_{ij}^k \right\} \in \mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}$$
.

- (i) The abelianization of \mathfrak{g} is defined as $ab(\mathfrak{g}) = \{0, 0, \Gamma_{ij}^k\}$.
- (ii) The forgetful Lie superalgebra of $\mathfrak g$ is defined as $\mathfrak F(\mathfrak g) = \left\{ c_{ij}^k, \rho_{ij}^k, 0 \right\}$.

Let
$$\mathfrak{g},\mathfrak{h}\in\mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}.$$
 If $\mathfrak{g}\to\mathfrak{h},$ then

Definition

Let
$$\mathfrak{g} = \left\{ c_{ij}^k, \rho_{ij}^k, \Gamma_{ij}^k \right\} \in \mathcal{LS}^{(m,n)}$$
.

- (i) The abelianization of \mathfrak{g} is defined as $ab(\mathfrak{g}) = \{0, 0, \Gamma_{ij}^k\}$.
- (ii) The forgetful Lie superalgebra of $\mathfrak g$ is defined as $\mathfrak F(\mathfrak g) = \left\{ c_{ij}^k, \rho_{ij}^k, 0 \right\}$.

Lemma

Let $\mathfrak{a}, \mathfrak{h} \in \mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}$. If $\mathfrak{a} \to \mathfrak{h}$, then

- (i) $ab(\mathfrak{g}) \to ab(\mathfrak{h})$.
- (ii) $\mathcal{F}(\mathfrak{a}) \to \mathcal{F}(\mathfrak{h})$.

Lemma

Let $\mathfrak{g}, \mathfrak{h} \in \mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}$. If $\mathfrak{g} \to \mathfrak{h}$, then the following relations must hold:

Lemma

Let $\mathfrak{g}, \mathfrak{h} \in \mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}$. If $\mathfrak{g} \to \mathfrak{h}$, then the following relations must hold:

- $ightharpoonup dim(G \cdot \mathfrak{g}) > dim(G \cdot \mathfrak{h})$

Lemma

Let $\mathfrak{g},\mathfrak{h}\in\mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}$. If $\mathfrak{g}\to\mathfrak{h}$, then the following relations must hold:

 $ightharpoonup dim(G \cdot \mathfrak{g}) > dim(G \cdot \mathfrak{h})$

$$(\dim(G\cdot g)=\dim(G)-\dim(Der(\mathfrak{g}))).$$

- ▶ $dim(\mathfrak{g}^1)_i \geqslant dim(\mathfrak{h}^1)_i$ for $i \in \mathbb{Z}_2$.
- If $\llbracket \cdot, \cdot \rrbracket_{\mathfrak{g}_1 \times \mathfrak{g}_1} \equiv 0$, then $\llbracket \cdot, \cdot \rrbracket_{\mathfrak{h}_1 \times \mathfrak{h}_1} \equiv 0$.

Lemma

Let $\mathfrak{g},\mathfrak{h}\in\mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}$. If $\mathfrak{g}\to\mathfrak{h}$, then the following relations must hold:

 $\blacktriangleright \ \dim(G \cdot \mathfrak{g}) > \dim(G \cdot \mathfrak{h})$

$$\big(\dim(\mathsf{G}\cdot\mathsf{g})=\dim(\mathsf{G})-\dim(\mathsf{Der}(\mathfrak{g}))\big).$$

- $\qquad \qquad \text{dim}(\mathfrak{g}^1)_{\mathfrak{i}}\geqslant \text{dim}(\mathfrak{h}^1)_{\mathfrak{i}} \ \textit{for} \ \mathfrak{i}\in \mathbb{Z}_2.$
- If $\llbracket \cdot, \cdot \rrbracket_{\mathfrak{g}_1 \times \mathfrak{g}_1} \equiv 0$, then $\llbracket \cdot, \cdot \rrbracket_{\mathfrak{h}_1 \times \mathfrak{h}_1} \equiv 0$.

 $\quad \text{dim}(\text{Der}(\alpha,\beta,\gamma))_{\mathfrak{i}}(\mathfrak{g}) \leqslant \text{dim}(\text{Der}(\alpha,\beta,\gamma))_{\mathfrak{i}}(\mathfrak{h}), \text{ for } \mathfrak{i} \in \mathbb{Z}_2.$

$$\big(\ D\in Der(\alpha,\beta,\gamma)(\mathfrak{g})_{\mathfrak{t}} \text{ if } \alpha D([\![x,y]\!])=\beta[\![D(x),y]\!]+(-1)^{\mathfrak{t}|x|}\gamma[\![x,D(y)]\!]\big).$$

The Variety $\mathcal{LS}^{(2,2)}$

Lie algebras of dimension 2. There exist, up to isomorphism, two Lie algebras of dimension 2.

- ightharpoonup The abelian Lie algebra \mathfrak{a}_0 .
- ▶ The affine Lie algebra \mathfrak{a}_1 , ($[e_1, e_2] = e_1$).

$$\mathfrak{a}_1 o \mathfrak{a}_0$$

$$\mathfrak{g} \not\to \mathfrak{h}$$

The Variety $\mathcal{LS}^{(2,2)}$

Lie algebras of dimension 2. There exist, up to isomorphism, two Lie algebras of dimension 2.

- ightharpoonup The abelian Lie algebra \mathfrak{a}_0 .
- ▶ The affine Lie algebra \mathfrak{a}_1 , ($[e_1, e_2] = e_1$).

It follows that

$$\mathfrak{a}_1 \to \mathfrak{a}_0$$

$$\mathfrak{g} \not\to \mathfrak{h}$$

The Variety $\mathcal{LS}^{(2,2)}$

Lie algebras of dimension 2. There exist, up to isomorphism, two Lie algebras of dimension 2.

- ightharpoonup The abelian Lie algebra \mathfrak{a}_0 .
- ▶ The affine Lie algebra \mathfrak{a}_1 , ($[e_1, e_2] = e_1$).

It follows that

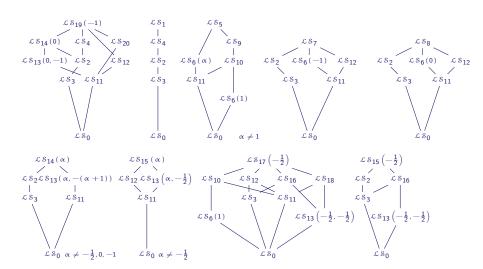
$$\mathfrak{a}_1 o \mathfrak{a}_0$$

Remark

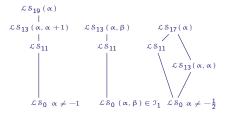
Let $\mathfrak{a},\mathfrak{h}\in\mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}$ such that $\mathfrak{g}_0=\mathfrak{a}_0$, and $\mathfrak{h}_0=\mathfrak{a}_1$, then

$$\mathfrak{g} \not\to \mathfrak{h}$$

Hasse Diagrams in $\mathcal{LS}^{(2,2)}$



Hasse Diagrams in $\mathcal{LS}^{(2,2)}$



$$\text{where } \mathfrak{I}_1 = \left\{ (\alpha,\beta) \, \middle| \, \begin{array}{l} \alpha \neq -\frac{1}{2}, \; \beta, \; \beta+1, \; -(\beta+1), \; \text{ and } \\ \beta \neq -\frac{1}{2}, \; \alpha, \; \alpha+1, \; -(\alpha+1) \end{array} \right\}.$$

The orbit closures in the variety $\mathcal{LS}^{(2,2)}$ are as follows:

g	$\overline{G\cdot\mathfrak{g}}$
\mathcal{LS}_0	$\mathcal{L}S_0$
\mathcal{LS}_1	$\mathcal{L}S_1, \mathcal{L}S_2, \mathcal{L}S_3, \mathcal{L}S_4, \mathcal{L}S_0$
\mathcal{LS}_2	$\mathcal{L}S_2, \mathcal{L}S_3, \mathcal{L}S_0$
\mathcal{LS}_3	$\mathcal{L}\mathbb{S}_3,\mathcal{L}\mathbb{S}_0$
\mathcal{LS}_4	$\mathcal{L}S_4, \mathcal{L}S_2, \mathcal{L}S_3, \mathcal{L}S_0$
\mathcal{LS}_{5}	$\mathcal{L}S_5, \mathcal{L}S_9, \mathcal{L}S_6(\alpha), \mathcal{L}S_{10}, \mathcal{L}S_{11}, \mathcal{L}S_0$
$\mathcal{LS}_6(\alpha), \ \alpha \neq 1$	$\mathcal{LS}_6(\alpha), \mathcal{LS}_{11}, \mathcal{LS}_0$
$\mathcal{LS}_{6}(1)$	$\mathcal{L}S_6(1), \mathcal{L}S_0$
\mathcal{LS}_{7}	$\mathcal{L}S_7, \mathcal{L}S_2, \mathcal{L}S_6(-1), \mathcal{L}S_{12}, \mathcal{L}S_3, \mathcal{L}S_{11}, \mathcal{L}S_0$
\mathcal{LS}_8	$\mathcal{L}S_8, \mathcal{L}S_2, \mathcal{L}S_6(0), \mathcal{L}S_{12}, \mathcal{L}S_3, \mathcal{L}S_{11}, \mathcal{L}S_0$
\mathcal{LS}_9	$\mathcal{L}S_9, \mathcal{L}S_{10}, \mathcal{L}S_{11}, \mathcal{L}S_6(1), \mathcal{L}S_0$
$\mathcal{L} \mathbb{S}_{10}$	$\mathcal{LS}_{10}, \mathcal{LS}_{11}, \mathcal{LS}_{6}(1), \mathcal{LS}_{0}$
$\mathcal{L} \mathbb{S}_{11}$	$\mathcal{LS}_{11}, \mathcal{LS}_{0}$
\mathcal{LS}_{12}	\mathcal{L} S ₁₂ , \mathcal{L} S ₃ , \mathcal{L} S ₁₁ , \mathcal{L} S ₀

Orbits in $\mathcal{LS}^{(2,2)}$

$\mathcal{L}S_{13}(\alpha,\beta), \beta \neq \alpha$	$\mathcal{LS}_{13}(\alpha,\beta),\mathcal{LS}_{11},\mathcal{LS}_{0}$
$\mathcal{L}S_{13}(\alpha,\alpha)$	$\mathcal{L}S_{13}(\alpha,\alpha),\mathcal{L}S_0$
$\mathcal{L}S_{14}(\alpha), \ \alpha \neq -\frac{1}{2}$	$\mathcal{LS}_{14}(\alpha), \mathcal{LS}_2, \mathcal{LS}_{13}(\alpha, -(\alpha+1)), \mathcal{LS}_3, \mathcal{LS}_{11}, \mathcal{LS}_0$
$\mathcal{L}S_{15}(\alpha), \ \alpha \neq -\frac{1}{2}$	$\mathcal{LS}_{15}(\alpha)$, \mathcal{LS}_{12} , $\mathcal{LS}_{13}(\alpha, -\frac{1}{2})$, \mathcal{LS}_{11} , \mathcal{LS}_{0}
$\mathcal{L}S_{15}\left(-rac{1}{2} ight)$	$\mathcal{L}S_{15}\left(-\frac{1}{2}\right)$, $\mathcal{L}S_{2}$, $\mathcal{L}S_{16}$, $\mathcal{L}S_{3}$, $\mathcal{L}S_{13}\left(-\frac{1}{2},-\frac{1}{2}\right)$, $\mathcal{L}S_{0}$
\mathcal{LS}_{16}	$\mathcal{LS}_{16}, \mathcal{LS}_{3}, \mathcal{LS}_{13}\left(-\frac{1}{2}, -\frac{1}{2}\right), \mathcal{LS}_{0}$
$\mathcal{LS}_{17}(\alpha), \ \alpha \neq -\frac{1}{2}$	$\mathcal{LS}_{17}(\alpha), \mathcal{LS}_{11}, \mathcal{LS}_{13}(\alpha, \alpha), \mathcal{LS}_{0}$
$\mathcal{L}S_{17}\left(-rac{1}{2} ight)$	$\mathcal{LS}_{17}\left(-\frac{1}{2}\right)$, \mathcal{LS}_{10} , \mathcal{LS}_{12} , \mathcal{LS}_{16} , \mathcal{LS}_{18} , \mathcal{LS}_{3} ,
	$\mathcal{LS}_{11},\mathcal{LS}_{6}(1),\mathcal{LS}_{13}\left(-\frac{1}{2},-\frac{1}{2}\right),\mathcal{LS}_{0}$
\mathcal{LS}_{18}	\mathcal{L} S ₁₈ , \mathcal{L} S ₁₁ , \mathcal{L} S ₁₃ $\left(-\frac{1}{2}, -\frac{1}{2}\right)$, \mathcal{L} S ₀
$\mathcal{L}S_{19}(\alpha), \ \alpha \neq -1$	$\mathcal{LS}_{19}(\alpha)$, $\mathcal{LS}_{13}(\alpha, \alpha+1)$, \mathcal{LS}_{11} , \mathcal{LS}_{0}
$\mathcal{LS}_{19}(-1)$	$\mathcal{L}S_{19}(-1), \mathcal{L}S_4, \mathcal{L}S_{20}, \mathcal{L}S_2, \mathcal{L}S_{12}, \mathcal{L}S_3, \mathcal{L}S_{11}, \mathcal{L}S_0$
$\mathcal{L} \mathbb{S}_{20}$	$\mathcal{LS}_{20}, \mathcal{LS}_{11}, \mathcal{LS}_{0}$

Muito obrigada!

isabel@cimat.mx

Lemma

If G is a connected algebraic group acting on a variety X, then the irreducible components of X are stable under the action of G. Moreover, the irreducible components of the variety X are closures of single orbits or closures of infinite families of orbits.

Definition

A Lie superalgebra $\mathfrak{g} \in \mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}$ is called rigid, if its orbit $G \cdot g$ is open in $LS^{(m,n)}$

Definition

A Lie superalgebra $\mathfrak{g} \in \mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}$ is called rigid, if its orbit $G \cdot g$ is open in $LS^{(m,n)}$

Lemma

Let
$$\mathfrak{g}\in\mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}.$$
 If $H^2(\mathfrak{g},\mathfrak{g})_0=0$, then \mathfrak{g} is rigid

Definition

A Lie superalgebra $\mathfrak{g} \in \mathcal{LS}^{(m,n)}$ is called rigid, if its orbit $G \cdot \mathfrak{g}$ is open in $LS^{(m,n)}$

Lemma

Let $\mathfrak{a} \in \mathcal{LS}^{(\mathfrak{m},\mathfrak{n})}$. If $H^2(\mathfrak{g},\mathfrak{g})_0 = 0$, then \mathfrak{g} is rigid

Remark

Every rigid superalgebra $\mathfrak g$ determines an irreducible component of $\mathcal{LS}^{(\mathfrak m,\mathfrak n)}$.

Theorem

There are 3 rigid Lie superalgebras in $\mathcal{LS}^{(2,2)}$

$$\mathcal{L} \mathbb{S}_{19}(-1) \text{,} \quad \mathcal{L} \mathbb{S}_{1} \text{,} \quad \mathcal{L} \mathbb{S}_{5} \text{.}$$

Theorem

There are 3 rigid Lie superalgebras in $\mathcal{LS}^{(2,2)}$

$$\mathcal{LS}_{19}(-1)$$
, \mathcal{LS}_1 , \mathcal{LS}_5 .

Corollary

The variety $\mathcal{LS}^{(2,2)}$ has at least four irreducible components.

Conjecture

The irreducible components of the variety $\mathcal{LS}^{(2,2)}$ are:

(i)
$$\mathcal{C}_1 = \overline{G \cdot \mathcal{L} S_{19}(-1)}$$
,

(ii)
$$C_2 = \overline{G \cdot \mathcal{L}S_1}$$
,

(iii)
$$\mathcal{C}_3 = \overline{G \cdot \mathcal{L} \mathcal{S}_5}$$
,

(iv)
$$\mathcal{C}_4 = \overline{\bigcup_{\alpha \neq -\frac{1}{2}} G \cdot \mathcal{L} \mathcal{S}_{14}(\alpha)}$$
,

$$\text{(v)} \ \, \mathbb{C}_5 = \overline{\ \, \bigcup_{1} \mathcal{L} \mathbb{S}_{15}(\alpha)},$$

$$\alpha \neq -\frac{1}{2}$$

(vi)
$$C_6 = \bigcup_{\alpha \neq -1} \mathcal{L}S_{19}(\alpha)$$
,

(vii)
$$C_7 = \overline{\bigcup_{\alpha,\beta} \mathcal{LS}_{13}(\alpha,\beta)}$$
.

