
Asymptotic results for a stochastic model
of rumor propagation on finite graphs

Elcio Lebensztayn

Institute of Mathematics, Statistics and Scientific Computation

University of Campinas

ELAM – 2018

Large deviations Maki–Thompson model Main result Ideas of the proof

Overview of the talk

Subject: The Maki–Thompson model for the propagation of a rumour

within a finite homogeneous population – A Large Deviations Principle

for the proportion of the population never hearing the rumour.

Paper: A Large Deviations Principle for the Maki–Thompson rumour
model. Journal of Mathematical Analysis and Applications, 2015.

1 Introduction to large deviations.
2 The Maki–Thompson rumour model.
3 Main result.
4 Ideas of the proof.



Large deviations Maki–Thompson model Main result Ideas of the proof

Meaning of large deviations

Idea: Asymptotic behaviour of small probabilities on an exponential scale.

P(Yn ∈ A)≈ exp{−bn I(A)} as n→ ∞,

for a sequence {Yn} of random variables, a sequence {bn} of positive
numbers with bn→ ∞, and a coefficient I(A)≥ 0.

Often one is interested in the probability of large deviations of Yn, far away
from its typical value.

Ex.: Let {Xi} be independent and identically distributed random variables
with P(Xi = 0) = P(Xi = 1) = 1/2. Define Sn = ∑

n
i=1 Xi , n ≥ 1.

Weak Law of Large Numbers: For every x > 0,

P
(
|Sn−n/2| ≥ nx

)
→ 0 as n→ ∞.

Therefore, the typical value of Sn is n/2.
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Meaning of large deviations

Central Limit Theorem: For every x ∈ R,

P
(
Sn−n/2≥ x

√
n
)
→ 1−Φ(x/σ) as n→ ∞,

where Φ is the distribution function of Z ∼ N(0,1), and σ2 = 1/4.

The deviations of Sn from n/2 are typically of the order
√

n.

Consequently, for every x < 1/2, we have that

P(Sn ≤ nx)→ 0 as n→ ∞,

and for every x > 1/2, we have that P(Sn ≥ nx)→ 0 as n→ ∞.

Large Deviations: To quantify precisely the exponential decay rate

at which these probabilities converge to 0.

(Useful tool when an approximation of these small probabilities is

needed).
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Example – Large Deviations Theorem

For every x < 1/2: lim
n→∞
−1

n
log P(Sn ≤ nx) = I(x),

and for every x > 1/2: lim
n→∞
−1

n
log P(Sn ≥ nx) = I(x),

where I(x) =

{
log 2 + x log x + (1− x) log(1− x) if x ∈ [0,1],

∞ otherwise,

with the usual convention that 0 log 0 = 0.

1�2 1
x

logH2L
IHxL

References:

Klenke (2014), Ch. 23.

Dembo and Zeitouni (2010).
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Maki–Thompson rumour model (1973)
Stochastic model for the propagation of a rumour within a population

I Closed homogeneously mixing population of N + 1 individuals.

People subdivided into three classes:�
 �	ign Ignorants: those not aware of the rumour.�
 �	spr Spreaders: who are spreading the rumour.�
 �	sti Stiflers: who know the rumour but have ceased communicating it after
meeting somebody already informed.

Notation: At time t , X(t)
�
 �	ign , Y (t)

�
 �	spr and Z (t)
�
 �	sti .

Initially: X(0) = N, Y (0) = 1 and Z (0) = 0.

X(t) + Y (t) + Z (t) = N + 1 for all t ≥ 0.
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Maki–Thompson rumour model (1973)
Stochastic model for the propagation of a rumour within a population

The rumour is spread by directed contact of the spreaders with

other individuals.

Process {(X(t),Y (t))}t≥0 is a continuous-time Markov chain with

interaction infinitesimal rate transition transformation�
 �	spr 
�
 �	ign XY (−1,1)

�
 �	ign ⇒
�
 �	spr ,�
 �	spr 

�
 �	spr or
�
 �	sti Y (N−X) (0,−1)

�
 �	spr ⇒
�
 �	sti .

For instance, the first case means that

P(X(t + dt) = i−1,Y (t + dt) = j + 1 |X(t) = i,Y (t) = j) = i j dt + o(dt).
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A realization of MT model on K6 (N = 5)

Time t = 0 :

spr

ign ign

ign

ignign

�
spr

ign spr

ign

ignign

�

spr

ign spr

spr

ignign

�
sti

ign spr

spr

ignign

�

sti

ign sti

spr

ignign
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References – Rumour models

Classical models: Daley and Kendall (1965),

Maki and Thompson (1973).

General reference: Daley and Gani (1999), Ch. 5.

Limit theorems: Sudbury (1985), Watson (1988), Pittel (1990).

Distribution of final quantities related to the rumour process:

Lefèvre and Picard (1994) (using martingales),

Pearce (2000) (pgf method).

Limit theorems for general stochastic rumour models:

Lebensztayn et al. (2011a,b), Arruda et al. (2015).
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Definitions

For a realization of the Maki–Thompson model on KN+1, we define

τ(N) = inf
{

t : Y (N)(t) = 0
}

: Extinction time of the process.

X (N)
F = X (N)(τ(N)): Final number of ignorant individuals in the

population.

X (N)
F /N: Proportion of the originally ignorant individuals who remained

ignorant at the end of the process.
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Limit Theorems

Law of Large Numbers – Sudbury (1985)

lim
N→∞

X (N)
F

N
= x∞ in probability,

where x∞ ≈ 0.2032 is the unique root of the function f (x) = 2(1−x) + log x
in the interval (0,1).

1�2 1
x

y

y = f HxL

x¥

For large N, approximately a fifth of the people are not aware of the rumour
at the moment that the spreading process stops, with high probability.
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Limit Theorems

Central Limit Theorem – Watson (1988)

√
N

(
X (N)

F

N
− x∞

)
D→N (0,σ2) as N→ ∞,

where
D→ denotes convergence in distribution, and N (0,σ2) is the

Gaussian distribution with mean zero and variance given by

σ
2 =

x∞(1− x∞)

1−2x∞

≈ 0.2727.

For large N, the proportion of the population never hearing the rumour is
approximately normal with mean x∞ and variance σ2/N.
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Main result
Large Deviations Principle for the ultimate proportion of ignorants

Definitions:
v∞ = 1− x∞ ≈ 0.7968 and ρ = 2 + log x∞ + log(1− x∞)≈ 0.1792.

h : [0,1)→ R given by

h(x) = x log x + (1− x)[ρ− log(1− x)],

with the usual convention that 0 log 0 = 0.

0.2 0.4 0.6 0.8 1.0
x

0.05
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hHxL

1 h(x∞) = 0.

2 h is↘ on [0,x∞] and [v∞,1),

and is↗ on [x∞,v∞].

3 h is strictly convex on [0,1/2],

and strictly concave on [1/2,1).
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Main result
Large Deviations Principle for the ultimate proportion of ignorants

H : [0,∞)→ [0,∞] given by H(x) =

{
h(x) if 0≤ x < 1,

∞ if x ≥ 1.

Theorem

Let νN be the probability distribution of the random variable N−1 X (N)
F

on [0,∞). Then the following conclusions hold.

(a) For each closed set F ⊂ [0,∞),

limsup
N→∞

1
N

log νN(F)≤− inf
x∈F

H(x).

(b) For each open set G ⊂ [0,∞),

liminf
N→∞

1
N

log νN(G)≥− inf
x∈G

H(x).
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Main ideas – Large Deviations Principle

Formula for the probability mass function P(X (N)
F = i), i = 0, . . . ,N−1,

in terms of factorials and the enumeration {dn} of certain automata.

Asymptotic estimates and bounds for n! (Stirling (1730)) and for dn

(Good (1961), Korshunov (1978), Bassino and Nicaud (2007)).

Some mathematical analysis. ww�
Auxiliary results which concern the asymptotic behaviour of normalized
logarithms of probabilities of certain events.

Theorem 1

For every x ∈ [0,1), we have that

lim
N→∞
− 1

N
log P(X (N)

F = bNxc) = lim
N→∞
− 1

N
log P(X (N)

F = dNxe) = h(x).
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Main ideas – Large Deviations Principle

Theorem 2

(a) If 0≤ x < x∞, then

lim
N→∞
− 1

N
log P(X (N)

F ≤ Nx) = h(x).

(b) If x∞ < x < y ≤ v∞, then

lim
N→∞
− 1

N
log P(Nx ≤ X (N)

F ≤ Ny) = h(x).

(c) If v∞ ≤ x < y < 1, then

lim
N→∞
− 1

N
log P(Nx ≤ X (N)

F ≤ Ny) = h(y).

The LDP follows from standard arguments of the Large Deviations Theory.

References
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Closed formula for the probability mass function of X (N)
F

For n ≥ 1, let dn denote the number of nonisomorphic unlabelled

initially connected complete and deterministic automata with n states

over a 2-letter alphabet.

Sequence A006689 in Sloane’s On-Line Encyclopedia of Integer

Sequences – First terms: 1,12,216,5248,160675,5931540.

Recursive formula (Liskovets (1969)):

d1 = 1 and dn =
n2n

(n−1)!
−

n−1

∑
i=1

n2(n−i)

(n− i)!
di for n ≥ 2.

Theorem 3

For each i = 0, . . . ,N−1, we have that P(X (N)
F = i) =

(N−1)!

i!
dN−i

N2(N−i)
.
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Asymptotic estimates

P(X (N)
F = i) =

(N−1)!

i!
dN−i

N2(N−i)
for i = 0, . . . ,N−1.

Stirling (1730): n!∼
√

2π nn+1/2 e−n as n→ ∞.

Korshunov (1978), Bassino and Nicaud (2007): dn ∼ κ n

{
2n
n

}
,

where κ = 2− 1
v∞

and

{
2n
n

}
is a Stirling number of the second kind

(number of ways of partitioning a set of 2n elements into n nonempty

subsets).

Good (1961):

{
2n
n

}
∼ α β

n nn−1/2, where α =

√
1

2π (2v∞−1)

and β =
1

e v∞ (1− v∞)
(Saddle point method).

http://oeis.org/A006689
http://oeis.org/A006689
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