Asymptotic results for a stochastic model of rumor propagation on finite graphs

Elcio Lebensztayn

Institute of Mathematics, Statistics and Scientific Computation University of Campinas

ELAM - 2018

Large deviations ●○○○ Maki–Thompson model

Main result

Ideas of the proof

< ⊡ >

Overview of the talk

- Subject: The Maki–Thompson model for the propagation of a rumour within a finite homogeneous population A Large Deviations Principle for the proportion of the population never hearing the rumour.
- Paper: A Large Deviations Principle for the Maki–Thompson rumour model. *Journal of Mathematical Analysis and Applications*, 2015.
- Introduction to large deviations.
- 2 The Maki–Thompson rumour model.
- Main result.
- Ideas of the proof.

Meaning of large deviations

Idea: Asymptotic behaviour of small probabilities on an exponential scale.

$$P(Y_n \in A) \approx \exp\{-b_n I(A)\}$$
 as $n \to \infty$,

for a sequence $\{Y_n\}$ of random variables, a sequence $\{b_n\}$ of positive numbers with $b_n \rightarrow \infty$, and a coefficient $I(A) \ge 0$.

Often one is interested in the probability of large deviations of Y_n , far away from its typical value.

Ex.: Let $\{X_i\}$ be independent and identically distributed random variables with $P(X_i = 0) = P(X_i = 1) = 1/2$. Define $S_n = \sum_{i=1}^n X_i$, $n \ge 1$.

• Weak Law of Large Numbers: For every x > 0,

$$\mathsf{P}ig(|S_n-n/2|\geq nxig) o 0 ext{ as } n o\infty.$$

Therefore, the typical value of S_n is n/2.

Large deviations	
0000	

Maki–Thompson model

Main	result
00	

Ideas of the proof

< ⊡ >

Meaning of large deviations

• Central Limit Theorem: For every $x \in \mathbb{R}$,

$$P(S_n - n/2 \ge x\sqrt{n}) \to 1 - \Phi(x/\sigma) \text{ as } n \to \infty,$$

where Φ is the distribution function of $Z \sim N(0, 1)$, and $\sigma^2 = 1/4$. The deviations of S_n from n/2 are typically of the order \sqrt{n} .

Consequently, for every x < 1/2, we have that

$$P(S_n \leq nx) \rightarrow 0 \text{ as } n \rightarrow \infty,$$

and for every x > 1/2, we have that $P(S_n \ge nx) \to 0$ as $n \to \infty$.

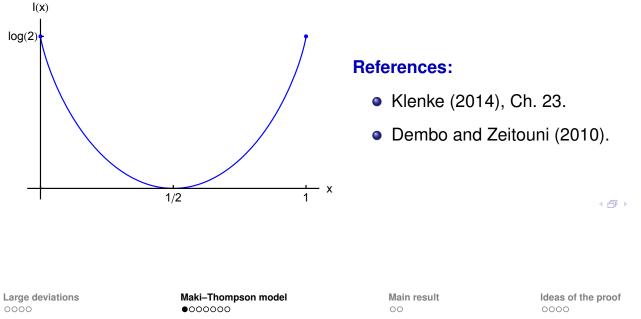
• Large Deviations: To quantify precisely the exponential decay rate at which these probabilities converge to 0.

(Useful tool when an approximation of these small probabilities is needed).

Example – Large Deviations Theorem

For every
$$x < 1/2$$
: $\lim_{n \to \infty} -\frac{1}{n} \log P(S_n \le nx) = I(x)$,
and for every $x > 1/2$: $\lim_{n \to \infty} -\frac{1}{n} \log P(S_n \ge nx) = I(x)$,
where $I(x) = \begin{cases} \log 2 + x \log x + (1-x) \log(1-x) & \text{if } x \in [0,1], \\ \infty & \text{otherwise,} \end{cases}$

with the usual convention that $0 \log 0 = 0$.



Maki–Thompson rumour model (1973)

Stochastic model for the propagation of a rumour within a population

► Closed homogeneously mixing population of N + 1 individuals.

People subdivided into three classes:

- ign Ignorants: those not aware of the rumour.
- **spr**) Spreaders: who are spreading the rumour.
- Stiflers: who know the rumour but have ceased communicating it after meeting somebody already informed.

Notation: At time t, X(t) ign, Y(t) spr and Z(t) sti. Initially: X(0) = N, Y(0) = 1 and Z(0) = 0. X(t) + Y(t) + Z(t) = N + 1 for all $t \ge 0$.

Maki–Thompson rumour model (1973) Stochastic model for the propagation of a rumour within a population

• The rumour is spread by directed contact of the spreaders with other individuals.

• Process $\{(X(t), Y(t))\}_{t \ge 0}$ is a continuous-time Markov chain with

interaction	infinitesimal rate	transition	transformation
(spr) (*) (ign)	XY	(-1, 1)	$(ign) \Rightarrow (spr),$
(spr) (*) (spr) or (sti)	Y(N-X)	(0,-1)	(spr)⇒(sti).

For instance, the first case means that

$$P(X(t+dt) = i-1, Y(t+dt) = j+1 | X(t) = i, Y(t) = j) = ijdt + o(dt).$$

 Large deviations
 Maki–Thompson model
 Main result
 Ideas

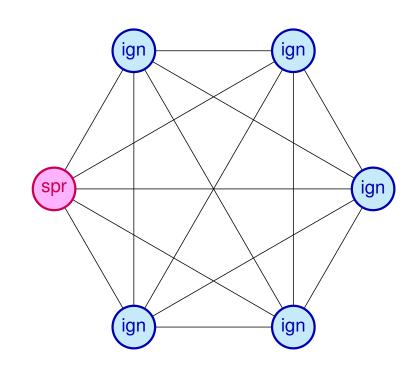
 0000
 000000
 000000
 000000

Ideas of the proof

< @ >

A realization of MT model on K_6 (N = 5)

Time *t* = 0 :



References – Rumour models

- Classical models: Daley and Kendall (1965), Maki and Thompson (1973).
- General reference: Daley and Gani (1999), Ch. 5.
- Limit theorems: Sudbury (1985), Watson (1988), Pittel (1990).

 Distribution of final quantities related to the rumour process: Lefèvre and Picard (1994) (using martingales), Pearce (2000) (pgf method).

• Limit theorems for general stochastic rumour models: Lebensztayn et al. (2011a,b), Arruda et al. (2015).

Large deviations

Maki–Thompson model

Main result

Main result

Ideas of the proof

Definitions

For a realization of the Maki–Thompson model on K_{N+1} , we define

- $\tau^{(N)} = \inf \{ t : Y^{(N)}(t) = 0 \}$: Extinction time of the process.
- $X_F^{(N)} = X^{(N)}(\tau^{(N)})$: Final number of ignorant individuals in the population.
- $X_F^{(N)}/N$: Proportion of the originally ignorant individuals who remained ignorant at the end of the process.

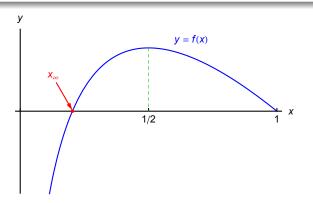
<₽>

Limit Theorems

Law of Large Numbers – Sudbury (1985)

$$\lim_{N\to\infty}\frac{X_F^{(N)}}{N}=x_{\infty} \quad \text{in probability},$$

where $x_{\infty} \approx 0.2032$ is the unique root of the function $f(x) = 2(1 - x) + \log x$ in the interval (0, 1).



For large N, approximately a fifth of the people are not aware of the rumour at the moment that the spreading process stops, with high probability.

Large deviations

Maki–Thompson model ○○○○○○● Main result

Ideas of the proof

Limit Theorems

Central Limit Theorem – Watson (1988)

$$\sqrt{N}\left(rac{X_F^{(N)}}{N}-x_{\infty}
ight) \stackrel{\mathcal{D}}{
ightarrow} \mathcal{N}(0,\sigma^2) \,\, ext{as} \,\, N
ightarrow \infty,$$

where $\xrightarrow{\mathcal{D}}$ denotes convergence in distribution, and $\mathcal{N}(0, \sigma^2)$ is the Gaussian distribution with mean zero and variance given by

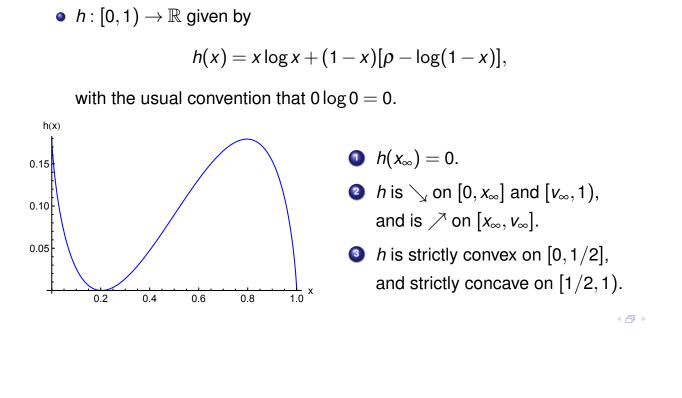
$$\sigma^2 = \frac{x_{\infty}(1-x_{\infty})}{1-2x_{\infty}} \approx 0.2727.$$

For large *N*, the proportion of the population never hearing the rumour is approximately normal with mean x_{∞} and variance σ^2/N .

Main result

Definitions:

Large Deviations Principle for the ultimate proportion of ignorants



• $v_{\infty} = 1 - x_{\infty} \approx 0.7968$ and $\rho = 2 + \log x_{\infty} + \log(1 - x_{\infty}) \approx 0.1792.$

Large deviations

Maki–Thompson model

Main result ○● Ideas of the proof

Main result

Large Deviations Principle for the ultimate proportion of ignorants

•
$$H: [0,\infty) \to [0,\infty]$$
 given by $H(x) = \begin{cases} h(x) & \text{if } 0 \le x < 1, \\ \infty & \text{if } x \ge 1. \end{cases}$

Theorem

Let v_N be the probability distribution of the random variable $N^{-1} X_F^{(N)}$ on $[0,\infty)$. Then the following conclusions hold.

(a) For each closed set $F \subset [0,\infty)$,

$$\limsup_{N\to\infty}\frac{1}{N}\log v_N(F)\leq -\inf_{x\in F}H(x).$$

(b) For each open set $G \subset [0, \infty)$,

$$\liminf_{N\to\infty}\frac{1}{N}\log v_N(G)\geq -\inf_{x\in G}H(x).$$

Main ideas – Large Deviations Principle

- Formula for the probability mass function $P(X_F^{(N)} = i), i = 0, ..., N-1$, in terms of factorials and the enumeration $\{d_n\}$ of certain automata.
- Asymptotic estimates and bounds for n! (Stirling (1730)) and for d_n (Good (1961), Korshunov (1978), Bassino and Nicaud (2007)).
- Some mathematical analysis.

Auxiliary results which concern the asymptotic behaviour of normalized logarithms of probabilities of certain events.

Theorem 1

For every $x \in [0, 1)$, we have that

$$\lim_{N\to\infty}-\frac{1}{N}\log P(X_F^{(N)}=\lfloor Nx\rfloor)=\lim_{N\to\infty}-\frac{1}{N}\log P(X_F^{(N)}=\lceil Nx\rceil)=h(x).$$

Large	deviations
0000	

Maki–Thompson model

Main result

Ideas of the proof ○●○○

Main ideas – Large Deviations Principle

Theorem 2

(a) If
$$0 \le x < x_{\infty}$$
, then

$$\lim_{N\to\infty}-\frac{1}{N}\log P(X_F^{(N)}\leq Nx)=h(x).$$

(b) If $x_{\infty} < x < y \le v_{\infty}$, then

$$\lim_{N\to\infty}-\frac{1}{N}\log P(Nx\leq X_F^{(N)}\leq Ny)=h(x).$$

(c) If
$$v_{\infty} \leq x < y < 1$$
, then

$$\lim_{N\to\infty}-\frac{1}{N}\log P(Nx\leq X_F^{(N)}\leq Ny)=h(y).$$

The LDP follows from standard arguments of the Large Deviations Theory.

< @ →

Closed formula for the probability mass function of $X_F^{(N)}$

- For $n \ge 1$, let d_n denote the number of nonisomorphic unlabelled initially connected complete and deterministic automata with n states over a 2-letter alphabet.
- Sequence A006689 in Sloane's On-Line Encyclopedia of Integer *Sequences* – First terms: 1, 12, 216, 5248, 160675, 5931540.

Recursive formula (Liskovets (1969)):

$$d_1 = 1$$
 and $d_n = \frac{n^{2n}}{(n-1)!} - \sum_{i=1}^{n-1} \frac{n^{2(n-i)}}{(n-i)!} d_i$ for $n \ge 2$.

Theorem 3

For each i = 0, ..., N-1, we have that $P(X_F^{(N)} = i) = \frac{(N-1)!}{i!} \frac{d_{N-i}}{M^{2(N-i)}}$.

Large deviations	Maki–Thompson model	Main result	Ideas of the proof
0000	000000	00	0000

Asymptotic estimates

$$P(X_F^{(N)} = i) = \frac{(N-1)!}{i!} \frac{d_{N-i}}{N^{2(N-i)}} \text{ for } i = 0, \dots, N-1.$$

- Stirling (1730): $n! \sim \sqrt{2\pi} n^{n+1/2} e^{-n}$ as $n \to \infty$.
- Korshunov (1978), Bassino and Nicaud (2007): $d_n \sim \kappa n \begin{cases} 2n \\ n \end{cases}$

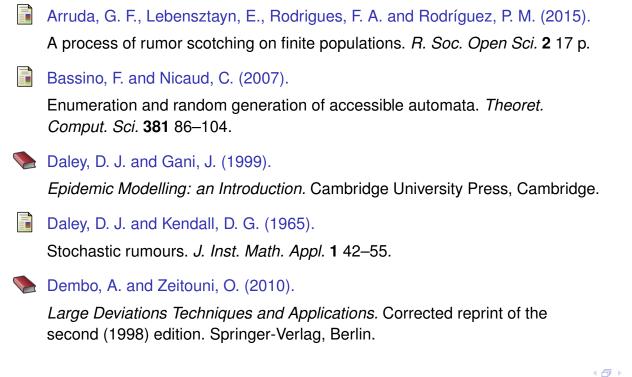
where $\kappa = 2 - \frac{1}{v_{\infty}}$ and $\binom{2n}{n}$ is a Stirling number of the second kind

(number of ways of partitioning a set of 2*n* elements into *n* nonempty subsets).

• Good (1961):
$${2n \\ n} \sim \alpha \beta^n n^{n-1/2}$$
, where $\alpha = \sqrt{\frac{1}{2\pi (2v_{\infty} - 1)}}$

and $\beta = \frac{1}{e v_{\infty} (1 - v_{\infty})}$ (Saddle point method).

References I



References

References II

Good, I. J. (1961).

An asymptotic formula for the differences of the powers at zero. *Ann. Math. Statist.* **32** 249–256.

Nenke, A. (2014).

Probability Theory. A Comprehensive Course. 2nd. ed. Springer-Verlag, London.

Korshunov, D. (1978).

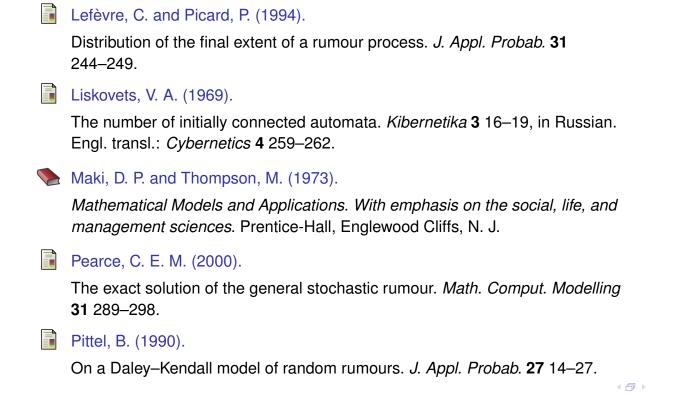
Enumeration of finite automata. Probl. Kibern. 34 5-82, in Russian.

Lebensztayn, E., Machado, F. P. and Rodríguez, P. M. (2011a).
 Limit theorems for a general stochastic rumour model. *SIAM J. Appl. Math.* 71 1476–1486.

Lebensztayn, E., Machado, F. P. and Rodríguez, P. M. (2011b).

On the behaviour of a rumour process with random stifling. *Environ. Modell. Softw.* **26** 517–522.

References III



References

References IV

Sloane, N. J. A. (2010).

The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, Sequence A006689.

Stirling, J. (1730).

Methodus Differentialis: Sive Tractatus de Summatione et Interpolatione Serierum Infinitarum. Typis Gul. Bowyer, London.

Sudbury, A. (1985).

The proportion of the population never hearing a rumour. J. Appl. Probab. 22 443-446.

Watson, R. (1988).

On the size of a rumour. Stochastic Process. Appl. 27 141–149.