Modelo estocástico para mutação com extinção em massa sobre \mathbb{T}_d^+

Carolina Grejo

ICMC - USP

Escola Latino Americana de Matemática 2018

Colaboradores

Fábio Lopes

Alejandro Roldán-Correa

Motivação

- → Diferentes modelos tem sido propostos para entender o papel das taxas de mutação na habilidade de certos patógenos evitarem o sistema imunológico de seus hospedeiros.
- → Propomos um modelo matemático simples de modo que
 - As mutações geram tipos de patógenos com um fitness maior do que o de seus ancestrais.
 - O sistema imunológico elimina de uma vez todos os patógenos de um mesmo tipo, mas somente depois de eliminar todos os tipos ancestrais de menor fitness.

Índice

Modelo

Resultados

Provas

Descrição do modelo

• Modelo de mutação e seleção natural de partículas sobre a árvore $\mathbb{T}_d^+.$

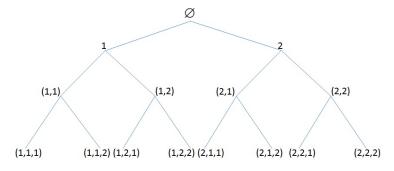


Figure: Representação dos vértices de \mathbb{T}_2^+

Descrição do modelo

- \rightarrow Cada sítio de \mathbb{T}_d^+ pode estar vazio ou ocupado por uma partícula (representando um patógeno).
- \rightarrow As partículas localizadas no nível i da árvore são do **tipo** i.
- \rightarrow Cada partícula do tipo i gera novas partículas (mutações) do tipo i+1, segundo um processo de Poisson de taxa λ .
 - As novas partículas são colocadas aleatoriamente em um dos d vizinhos mais próximos do nível i+1.
 - $oldsymbol{\circ}$ A partícula gera mutações até que morra ou até que todos os seus d vizinhos mais próximos estejam ocupados.
- → Cada tipo de partícula tem um tempo de vida exponencial de taxa 1, que começa a contar somente quando seu progenitor morre.
- \rightarrow No tempo t=0 existe somente uma partícula no sistema, localizada na raiz.

Comentários

Observação

A dinâmica deste modelo combina as seguintes ideias:

- 1) O sistema imunológico é capaz de livrar-se, depois de um tempo exponencial, de todos os patógenos de um tipo determinado de uma vez, como em *Schinazi and Schweinsberg* (2008).
- 2) Um patógeno está em risco somente depois que seu progenitor morre, como em *Aldous e Krebs* (1990).
- 3) Enquanto somente considerarmos mutações que trazem algum tipo de melhora aos patógeno, os tipos menos aptos morrem primeiro, como em *Guiol, Machado e Schinazi* (2011).

Índice

Modelo

2 Resultados

Provas

Notação e definição

Notação

Denotamos por $\eta_t \in \{0,1\}^{\mathbb{T}_d^+}$ o estado dos vértices de \mathbb{T}_d^+ , em termos da ocupação, no tempo t.

Definição

Se todas as partículas são eventualmente removidas de \mathbb{T}_d^+ , com probabilidade 1, dizemos que o processo η_t morre. Caso contrário, dizemos que o processo sobrevive.

Resultados

Theorem (1)

Para $d \geq 2$ fixo e

$$\lambda_c(d) := \inf \left\{ \lambda : \inf_{0 < u < 1} \frac{\lambda}{u(1-u)} \left[1 - \left(\frac{\lambda}{\lambda + u}\right)^d \right] > 1 \right\},$$

temos que

- i. Se $\lambda < \lambda_c(d)$ então o processo η_t morre.
- ii. Se $\lambda > \lambda_c(d)$ então o processo η_t sobrevive.

Resultados

Theorem (2)

Para $d \geq 2$ fixo, \mathcal{B} um ramo infinito de \mathbb{T}_d^+ e

$$\lambda_s(d) := \inf \left\{ \lambda : d - 2\lambda \left[1 - \left(\frac{\lambda}{\lambda + 1} \right)^d \right] < 0 \right\}$$

temos que:

- i. Se $\lambda \leq \lambda_s(d)$ então o processo η_t morre ao longo de \mathcal{B} .
- ii. Se $\lambda > \lambda_s(d)$ então o processo η_t sobrevive ao longe de \mathcal{B} .

Resultados

Algumas aproximações numéricas para $\lambda_c(d)$ e $\lambda_s(d)$.

	d	2	3	4	5	6	7
Ì	$\lambda_c(d)$	0.29335	0.26103	0.25333	0.25107	0.2504	0.2501
ĺ	$\lambda_s(d)$	1.6180	2.2406	2.8650	3.4904	4.1165	4.7429

Observação

Para $\lambda \in (\lambda_c(d), \lambda_s(d)]$ o processo η_t se extingue ao longo de qualquer ramo infinito, mas sobrevive em \mathbb{T}_d^+ .

Índice

Modelo

2 Resultados

3 Provas

Provas

Notações:

- $N = \{1, ..., d\}$
- $\mathcal{N} = \bigcup_{n=0}^{\infty} N^n$: conjunto de *n*-uplas finitas com entradas em N (com $N^0 = \emptyset$)

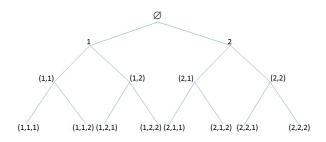


Figure: Representação dos vértices de \mathbb{T}_2^+ .

Prova - Teorema 1

Figure: Formas de ocupar a posição n=(1,1), dado que a partícula n=1 já nasceu. As arestas vermelhas representam a primeira mutação.

- \rightarrow Sejam $X_i, i = 1, ..., d,$ v. a. independentes com distribuição Gama de parâmetros i e λ .
- ightarrow Seja W a v. a. com distribuição de probabilidade dada por

$$\mathbb{P}(W \le w) = \frac{1}{d} \left[\sum_{i=1}^{d} \mathbb{P}(X_i \le w) \right], \ w \ge 0$$

→ Podemos pensar a v. a. W como o **tempo** necessário para que um vértice fixo receba um filho de uma partícula de seu vértice vizinho.

Prova - Teorema 1 (Morte na árvore \mathbb{T}_d^+)

- $\{W_i\}$ cópias independentes da v. a. W.
- $\{K_i\}$ v. a. independentes e exponencialmente distribuídas com parâmetro 1.

A probabilidade de que uma partícula nasça em um vértice do k-ésimo nível de \mathbb{T}_d^+ é igual a

$$\mathbb{P}\left(\sum_{i=1}^{j} W_{i} < \sum_{i=1}^{j} K_{i}, \ j = 1, ..., k\right).$$

Prova - Teorema 1 (Morte na árvore \mathbb{T}_d^+)

 \mathbb{E} (número total de partículas nascidas no processo) =

$$\begin{split} &= \sum_{\bar{n} \in \mathcal{N}} \mathbb{E}[\mathbb{I}\{\text{uma partícula nasce em } \bar{n}\}] \\ &= \sum_{k \geq 1} d^k \mathbb{P}\left(\sum_{i=1}^j W_i < \sum_{i=1}^j K_i, \ j = 1, ..., k\right) \\ &\leq \sum_{k \geq 1} d^k \mathbb{P}\left(\sum_{i=1}^k W_i < \sum_{i=1}^k K_i\right) \\ &\leq \sum_{k \geq 1} d^k \mathbb{E}\left(e^{u(\sum_{i=1}^k K_i - \sum_{i=1}^k W_i)}\right), \\ &= \sum_{k > 1} \left[\frac{\lambda}{u(1-u)} \left[1 - \left(\frac{\lambda}{\lambda + u}\right)^d\right]\right]^k, \end{split}$$

Prova - Teorema 1 (Morte na árvore \mathbb{T}_d^+)

Então,

 \mathbb{E} (número total de partículas nascidas no processo) $< \infty$

se

$$\sum_{k\geq 1} \left[\frac{\lambda}{u(1-u)} \left[1 - \left(\frac{\lambda}{\lambda+u} \right)^d \right] \right]^k < \infty.$$

Assim, se

$$\inf_{0 < u < 1} \left\{ \frac{\lambda}{u(1-u)} \left[1 - \left(\frac{\lambda}{\lambda+u}\right)^d \right] \right\} < 1,$$

o processo morre.

Lema (Resultado Auxiliar)

Seja $Z_1,Z_2,\ldots v$. a. i.i.d. $com\ \mathbb{E}[Z]<0$ e $\mathbb{P}[Z>0]>0$. Seja $\mathbb{E}[e^{uZ}]=\psi(u)$ finita em alguma vizinhança de 0, e seja $\rho=\inf_{u>0}\psi(u)$. Então,

$$\lim_{k \to \infty} \frac{1}{k} \log \mathbb{P} \left[\sum_{i=1}^k Z_i > 0, j = 1, \dots, k. \right] = \log \rho.$$

Em nosso modelo, temos $Z_i = K_i - W_i$, i = 1, ..., n. A probabilidade que nasça uma partícula em um vértice fixado no k-ésimo nível pode ser escrita como

$$\mathbb{P}\left(\sum_{i=1}^{j} Z_{i} > 0, \ j = 1, ..., k\right).$$

Pelo Lema,

$$\lim_{k \to \infty} \frac{1}{k} \log \mathbb{P} \left(\sum_{i=1}^{j} Z_i > 0, \ j = 1, \dots, k \right) =$$

$$= \log \left[\inf_{0 < u < 1} \left\{ \frac{\lambda}{u(1-u)} \left[1 - \left(\frac{\lambda}{\lambda+u} \right)^{a} \right] \right\} \right].$$

Suponha que, para $\delta > 0$,

$$\inf_{0 < u < 1} \left\{ \frac{\lambda}{u(1-u)} \left[1 - \left(\frac{\lambda}{\lambda + u} \right)^d \right] \right\} = 1 + \delta.$$

Tomando $\epsilon = \delta/2$, exite $K \in \mathbb{N}$ para todo $k \geq K$

 $\mathbb{E}[\text{número de partículas do tipo }k]$

$$= d^{k} \mathbb{P} \left(\sum_{i=1}^{J} Z_{i} > 0, \ j = 1, \dots, k \right)$$

$$> \left[\inf_{0 < u < 1} \left\{ \frac{\lambda}{u(1-u)} \left[1 - \left(\frac{\lambda}{\lambda+u} \right)^{d} \right] \right\} - \epsilon \right]^{k}$$

$$= (1 + \delta/2)^{k} > 1.$$

Observação

- Uma partícula do tipo (n-1)k pode ter no máximo d^{nk} mutações do tipo nk.
- O número esperado de partículas do tipo nk, mutações de uma partículas do tipo (n-1)k, é maior do que 1.

Definição

Seja $\{Y_n\}_{n\geq 1}$ tal que Y_n é o número de partículas do tipo nk nascidas no processo η_t .

- Da definição, $Y_0 = 1$ e $\{Y_n\}_{n \geq 1}$ domina um processo Galton-Watson com número médio de descendentes $\mathbb{E}[Y_1]$.
- Como $\mathbb{E}[Y_1] > 1$, o processo $\{Y_n\}_{n \geq 1}$ sobrevive com probabilidade positiva e, consequentemente, η_t sobrevive.

Prova - Teorema 2 (Processo sobre um ramo \mathcal{B} de \mathbb{T}_d^+)

- X(t): o número de partículas em \mathcal{B} no tempo $t \geq 0$
- $\{B_i\}_{i\geq 1}$ família de v.a. i.i.d. com distribuição exponencial de taxa λ
- K_1 v.a. com distribuição exponencial de taxa 1.

Prova - Teorema 2 (Processo sobre um ramo \mathcal{B} de \mathbb{T}_d^+)

Denotemos por X_n o processo a tempo discreto imerso em X(t). Este é uma Cadeia de Markov de nascimento e morte com probabilidades de transição:

$$p_k := \mathbb{P}(X_{n+1} = k+1 | X_n = k)$$

$$= \frac{1}{d} \left[\mathbb{P}(B_1 < K_1) + \mathbb{P}(B_1 + B_2 < K_1) + \dots + \mathbb{P}\left(\sum_{i=1}^d B_i < K_1\right) \right]$$

$$= \frac{1}{d} \left[\frac{\lambda}{1+\lambda} + \left(\frac{\lambda}{1+\lambda}\right)^2 + \dots + \left(\frac{\lambda}{1+\lambda}\right)^d \right]$$

$$= \frac{\lambda}{d} \left[1 - \left(\frac{\lambda}{1+\lambda}\right)^d \right]$$

 \mathbf{e}

$$q_k := \mathbb{P}(X_{n+1} = k - 1 | X_n = k) = 1 - p_k.$$

Prova - Teorema 2 (Processo sobre um ramo \mathcal{B} de \mathbb{T}_d^+)

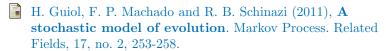
Assim, a prova do Teorema 2 se reduz a um problema de sobrevivência de uma Cadeia de Markov de nascimento e morte. É conhecido que (X_n) morre se, e somente se,

$$\sum_{k=1}^{\infty} \prod_{i=1}^{k} \left(\frac{q_i}{p_i} \right) = \sum_{k=1}^{\infty} \left(\frac{q_1}{p_1} \right)^k = +\infty.$$

Isto implica que X(t)morre se, e somente se,

$$\frac{q_1}{p_1} \ge 1.$$

Bibliografia



- D. Aldous and W. Krebs (1990), **The birth-and-assassination** process. Statistics & Probability Letters, 10, no. 5, 427-430.
- R. Schinazi and J. Schweinsberg (2008), **Spatial and** non-spatial stochastic models for immune response, Markov Process. Related Fields 14, 255-276.
- R. Schinazi (1999), Classical and Spatial Stochastic Processes. Birkhäuser.
- C. Grejo, F. Lopes, F. Machado and A. Roldan-Correa, (2017).

 A stochastic model for evolution with mass extinction on

 T_d⁺. arXiv:1710.11150

Obrigada!