

Solução Numérica de Sistemas de Ecuações Diferenciais Ordinárias Aplicados na Diabetes

Catalina M. Rúa A. Janeth Alpala Alpala

Departamento de Matemáticas y Estadística Universidad de Narinho - Colombia

ESCOLA LATINO AMERICANA DE MATEMÁTICAS CMCC - UFABC - Santo André

31/08/2018

Conteúdo

2 Diabetes e modelos matemáticos

3 Métodos numéricos

Introdução

A diabetes é uma doença crônica que afeta a milhões de pessoas no mundo. Segundo a Organização Mundial da Saude, ao redor de 422 milhões de pessoas sofrem de esta e o número vai em aumento devido às mudanças no estilo de vida, cada vez mais sedentário.

Uma ferramenta utilizada para describir os procesos biológicos da diabetes são os modelos matemáticos.

• Modelo de Ackerman

• Modelo mínimo de Bergman

Introdução

A diabetes é uma doença crônica que afeta a milhões de pessoas no mundo. Segundo a Organização Mundial da Saude, ao redor de 422 milhões de pessoas sofrem de esta e o número vai em aumento devido às mudanças no estilo de vida, cada vez mais sedentário.

Uma ferramenta utilizada para describir os procesos biológicos da diabetes são os modelos matemáticos.

• Modelo de Ackerman

Modelo mínimo de Bergman

A diabetes Modelo de Ackerman Modelo Mínimo

A diabetes

A diabetes mellitus ocorre quando o pâncreas não produz insulina suficiente ou quando o organismo não utiliza efetivamente a produzida, gerando um aumento dos níveis de glucose na sangue.

(a) Tipo 1.

Diabetes tipo 1

- Normalmente aparece em crianças e adolescentes.
- Deficiência absoluta de insulina.

(b) Tipo 2.

Diabetes tipo 2

- Aparece em pessoas adultas.
- Resistencia à insulina.

A diabetes Modelo de Ackerman Modelo Mínimo

A diabetes

A diabetes mellitus ocorre quando o pâncreas não produz insulina suficiente ou quando o organismo não utiliza efetivamente a produzida, gerando um aumento dos níveis de glucose na sangue.

(a) Tipo 1.

Diabetes tipo 1

- Normalmente aparece em crianças e adolescentes.
- Deficiência absoluta de insulina.

(b) Tipo 2.

Diabetes tipo 2

- Aparece em pessoas adultas.
- Resistencia à insulina.

Pruebas de diagnóstico e tratamento

Prueba de tolerância à glucose oral

Esta prueba mide a glucose na sangue depois de haber guardado jejum durante ao menos 8 horas. Quando passam 2 horas se a glucose na sangue \geq 140 mg/dL diagnostica-se diabetes.

Prueba de tolerância à glucose intravenosa

Esta prueba normalmente é utiliza para propósitos de investigação e mede a sensibilidade à insulina relacionada com resistência à insulina.

Figura 3: Diagnóstico e tratamento.

A diabetes Modelo de Ackerman Modelo Mínimo

Modelos matemáticos

Modelo de Ackerman (Ver [1])

$$\frac{dG}{dt}(t) = -m_1(G(t) - G_b) - m_2(I(t) - I_b), \qquad G(0) = G_0,$$

$$\frac{dI}{dt}(t) = m_4(G(t) - G_b) - m_3(I(t) - I_b), \qquad I(0) = I_0.$$

$$\begin{bmatrix} g(t)\\ i(t) \end{bmatrix}' = \begin{bmatrix} -m_1 & -m_2\\ m_4 & -m_3 \end{bmatrix} \begin{bmatrix} g(t)\\ i(t) \end{bmatrix} \quad \Rightarrow \quad \mathbf{y}' = \mathbf{A}\mathbf{y}.$$

Polinômio característico:

$$|A - \lambda I| = \lambda^{2} + (m_{1} + m_{3})\lambda + m_{1}m_{3} + m_{2}m_{4} = 0.$$

$$\lambda^2 + 2\alpha\lambda + \omega_0^2 = 0.$$

Sistema massa-mola

A diabetes Modelo de Ackerman Modelo Mínimo

Modelos matemáticos

Modelo de Ackerman (Ver [1])

$$\frac{dG}{dt}(t) = -m_1(G(t) - G_b) - m_2(I(t) - I_b), \qquad G(0) = G_0,$$

$$\frac{dI}{dt}(t) = m_4(G(t) - G_b) - m_3(I(t) - I_b), \qquad I(0) = I_0.$$

$$\begin{bmatrix} g(t)\\ i(t) \end{bmatrix}' = \begin{bmatrix} -m_1 & -m_2\\ m_4 & -m_3 \end{bmatrix} \begin{bmatrix} g(t)\\ i(t) \end{bmatrix} \quad \Rightarrow \quad \mathbf{y}' = \mathbf{A}\mathbf{y}.$$

Polinômio característico:

$$|A - \lambda I| = \lambda^{2} + (m_{1} + m_{3})\lambda + m_{1}m_{3} + m_{2}m_{4} = 0.$$

$$\lambda^2 + 2\alpha\lambda + \omega_0^2 = 0.$$

Sistema massa-mola

A diabetes Modelo de Ackerman Modelo Mínimo

Modelos matemáticos

• Sobre-amortecido. Raízes reais e distintas.

$$G(t) = G_b + e^{-\alpha t} \left(C_1 e^{\omega t} + C_2 e^{-\omega t} \right),$$

$$I(t) = I_b + \frac{e^{-\alpha t}}{m_2} \left[C_1 (\alpha - p_1 - \omega) e^{\omega t} + C_2 (\alpha - p_1 + \omega) e^{-\omega t} \right].$$

A diabetes Modelo de Ackerman Modelo Mínimo

Modelos matemáticos

• Sub-amortecido. Raízes complexas.

$$G(t) = G_b + Ae^{-\alpha t}\cos(\omega t - \delta),$$

$$I(t) = I_b + \frac{Ae^{-\alpha t}}{m_2}\left[(\alpha - m_1)\cos(\omega t - \delta) + \omega\sin(\omega t - \delta)\right].$$

A diabetes Modelo de Ackerman Modelo Mínimo

Modelos matemáticos

Figura 4: Sistemas amortecidos.

• Sub-amortecido. Raízes complexas.

$$G(t) = G_b + Ae^{-\alpha t}\cos(\omega t - \delta),$$

$$I(t) = I_b + \frac{Ae^{-\alpha t}}{m_2}\left[(\alpha - m_1)\cos(\omega t - \delta) + \omega\sin(\omega t - \delta)\right].$$

A diabetes Modelo de Ackerman **Modelo Mínimo**

Modelos matemáticos

Modelo Mínimo de Bergman (Ver [6])

$$\frac{dG}{dt}(t) = -m_1(G(t) - G_b) - X(t)G(t), \qquad G(0) = G_0$$

$$\frac{dX}{dt}(t) = -m_2X(t) + m_3(I(t) - I_b), \qquad X(0) = 0$$

$$\frac{dI}{dt}(t) = m_4(G(t) - m_5)t - m_6(I(t) - I_b), \qquad I(0) = I_0$$

Logo

$$\boldsymbol{y}' = \boldsymbol{f}(t, \boldsymbol{y}),$$

onde

$$\boldsymbol{y}'(t) = \begin{bmatrix} G'(t) \\ X'(t) \\ I'(t) \end{bmatrix} \quad e \quad \boldsymbol{f}(t, \boldsymbol{y}) = \begin{bmatrix} -m_1(G(t) - G_b) - X(t)G(t) \\ -m_2X(t) + m_3(I(t) - I_b) \\ m_4(G(t) - m_5)t - m_6(I(t) - I_b) \end{bmatrix}$$

A diabetes Modelo de Ackerman **Modelo Mínimo**

Modelos matemáticos

Modelo Mínimo de Bergman (Ver [6])

$$\frac{dG}{dt}(t) = -m_1(G(t) - G_b) - X(t)G(t), \qquad G(0) = G_0$$

$$\frac{dX}{dt}(t) = -m_2X(t) + m_3(I(t) - I_b), \qquad X(0) = 0$$

$$\frac{dI}{dt}(t) = m_4(G(t) - m_5)t - m_6(I(t) - I_b), \qquad I(0) = I_0$$

Logo

$$\boldsymbol{y}' = \boldsymbol{f}(t, \boldsymbol{y}),$$

onde

$$\boldsymbol{y}'(t) = \begin{bmatrix} G'(t) \\ X'(t) \\ I'(t) \end{bmatrix} \quad e \quad \boldsymbol{f}(t, \boldsymbol{y}) = \begin{bmatrix} -m_1(G(t) - G_b) - X(t)G(t) \\ -m_2X(t) + m_3(I(t) - I_b) \\ m_4(G(t) - m_5)t - m_6(I(t) - I_b) \end{bmatrix}.$$

Método de Euler Métodos de passo único Métodos de passo múltiplo

Abordagem geral

Problema de Cauchy

$$\begin{cases} \boldsymbol{y'}(t) = \boldsymbol{f}(t, \boldsymbol{y}(t)), & t \in [t_0, t_f] \\ \boldsymbol{y}(t_0) = \boldsymbol{y}_0. \end{cases}$$

Método de Euler Métodos de passo único Métodos de passo múltiplo

Abordagem geral

Problema de Cauchy

$$\begin{cases} \boldsymbol{y'}(t) = \boldsymbol{f}(t, \boldsymbol{y}(t)), & t \in [t_0, t_f] \\ \boldsymbol{y}(t_0) = \boldsymbol{y}_0. \end{cases}$$

Dedução por reta tangente

Declive $y'(t_0) = f(t_0, y_0)$,

$$y = y_0 + f(t_0, y_0)(t - t_0).$$

Figura 6: Método de Euler.

Deducção por reta tangente

Declive $y'(t_0) = f(t_0, y_0)$.

$$y = y_0 + f(t_0, y_0)(t - t_0).$$

Ao aplicar $t_1 = t_0 + h$, tem-se

Figura 6: Método de Euler.

Deducção por reta tangente

Declive $y'(t_0) = f(t_0, y_0)$.

$$y = y_0 + f(t_0, y_0)(t - t_0).$$

Ao aplicar $t_1 = t_0 + h$, tem-se

 $y_{i+1} = y_i + hf(t_i, y_i).$

Figura 6: Método de Euler.

Dedução por series de Taylor

A expansão de Taylor ao redor de t_i é

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2!}y''(\xi_i),$$

para $\xi_i \in [t_i, t_{i+1}]$, com $h = t_{i+1} - t_i$.

Método de Euler

$$\begin{cases} y_{i+1} = y_i + hf(t_i, y_i) \\ y(t_0) = y_0, \end{cases}$$

onde
$$h = \frac{t_f - t_0}{n}$$
 y $t_{i+1} = t_i + h$, $i = 0, 1, \dots, n-1$.

$$\begin{cases} \boldsymbol{y}_{i+1} = \boldsymbol{y}_i + h\Phi(t_i, \boldsymbol{y}_i, \boldsymbol{y}_{i+1}, h), \\ \boldsymbol{y}(t_0) = \boldsymbol{y}_0. \end{cases}$$

Método de Euler

 $\begin{cases} \boldsymbol{y}_{i+1} = \boldsymbol{y}_i + h\boldsymbol{f}(t_i, \boldsymbol{y}_i), \\ \boldsymbol{y}(t_0) = \boldsymbol{y}_0. \end{cases}$

Método do Trapézio

$$\begin{cases} \boldsymbol{y}_{i+1} = \boldsymbol{y}_i + \frac{h}{2} \left[\boldsymbol{f}(t_i, \boldsymbol{y}_i) + \boldsymbol{f}(t_i + h, \boldsymbol{y}_{i+1}) \right], \\ \boldsymbol{y}(t_0) = \boldsymbol{y}_0. \end{cases}$$

$$\begin{cases} \boldsymbol{y}_{i+1} = \boldsymbol{y}_i + h\Phi(t_i, \boldsymbol{y}_i, \boldsymbol{y}_{i+1}, h), \\ \boldsymbol{y}(t_0) = \boldsymbol{y}_0. \end{cases}$$

Método de Euler

 $\begin{cases} \boldsymbol{y}_{i+1} = \boldsymbol{y}_i + h\boldsymbol{f}(t_i, \boldsymbol{y}_i), \\ \boldsymbol{y}(t_0) = \boldsymbol{y}_0. \end{cases}$

Método do Trapézio

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

$$\begin{cases} \boldsymbol{y}_{i+1} = \boldsymbol{y}_i + h\Phi(t_i, \boldsymbol{y}_i, \boldsymbol{y}_{i+1}, h), \\ \boldsymbol{y}(t_0) = \boldsymbol{y}_0. \end{cases}$$

Método de Euler

 $\begin{cases} \boldsymbol{y}_{i+1} = \boldsymbol{y}_i + h\boldsymbol{f}(t_i, \boldsymbol{y}_i), \\ \boldsymbol{y}(t_0) = \boldsymbol{y}_0. \end{cases}$

Método do Trapézio

$$\begin{cases} \boldsymbol{y}_{i+1} = \boldsymbol{y}_i + \frac{h}{2} \left[\boldsymbol{f}(t_i, \boldsymbol{y}_i) + \boldsymbol{f}(t_i + h, \boldsymbol{y}_{i+1}) \right], \\ \boldsymbol{y}(t_0) = \boldsymbol{y}_0. \end{cases}$$

Erro global de discretização

Para um método de passo único, o erro global de discretização no instante t_i é dado por

$$\boldsymbol{e}_i = \boldsymbol{y}(t_i) - \boldsymbol{y}_i.$$

Convergência
$$\iff \lim_{h \to 0} ||e_i|| = 0.$$

Erro global de discretização

Para um método de passo único, o erro global de discretização no instante t_i é dado por

$$\boldsymbol{e}_i = \boldsymbol{y}(t_i) - \boldsymbol{y}_i.$$

$$\mathbf{Convergência} \Longleftrightarrow \lim_{h \to 0} \|\boldsymbol{e}_i\| = 0.$$

Erro local de discretização

1

Para um método de passo único, o erro local de discretização é definido por

$$\boldsymbol{\alpha}_i = \frac{\boldsymbol{y}(t_{i+1}) - \boldsymbol{y}(t_i)}{h} - \Phi(t_i, \boldsymbol{y}(t_i), h).$$

Erro global de discretização

Para um método de passo único, o erro global de discretização no instante t_i é dado por

$$\boldsymbol{e}_i = \boldsymbol{y}(t_i) - \boldsymbol{y}_i.$$

Convergência
$$\iff \lim_{h \to 0} \|\boldsymbol{e}_i\| = 0.$$

Erro local de discretização

1

Para um método de passo único, o erro local de discretização é definido por

$$\boldsymbol{\alpha}_i = \frac{\boldsymbol{y}(t_{i+1}) - \boldsymbol{y}(t_i)}{h} - \Phi(t_i, \boldsymbol{y}(t_i), h).$$

$$h\boldsymbol{\alpha}_i = \boldsymbol{y}(t_{i+1}) - [\boldsymbol{y}(t_i) + h\Phi(t_i, \boldsymbol{y}(t_i), h)] = \boldsymbol{y}(t_{i+1}) - \boldsymbol{y}_{i+1}.$$

Erro global de discretização

Para um método de passo único, o erro global de discretização no instante t_i é dado por

$$\boldsymbol{e}_i = \boldsymbol{y}(t_i) - \boldsymbol{y}_i.$$

$$\textbf{Convergência} \Longleftrightarrow \lim_{h \to 0} \|\boldsymbol{e}_i\| = 0.$$

Erro local de discretização

1

Para um método de passo único, o erro local de discretização é definido por

$$\boldsymbol{\alpha}_i = rac{\boldsymbol{y}(t_{i+1}) - \boldsymbol{y}(t_i)}{h} - \Phi(t_i, \boldsymbol{y}(t_i), h).$$

$$h\boldsymbol{\alpha}_i = \boldsymbol{y}(t_{i+1}) - [\boldsymbol{y}(t_i) + h\Phi(t_i, \boldsymbol{y}(t_i), h)] = \boldsymbol{y}(t_{i+1}) - \boldsymbol{y}_{i+1}.$$

Método de Euler **Métodos de passo único** Métodos de passo múltiplo

Consistência

Consistência e Convergência

Um método de passo único é consistente com o problema de Cauchy se a função incremento $\Phi(t,\pmb{y},h),$ satisfaz a relação

 $\Phi(t, \boldsymbol{y}, 0) = \boldsymbol{f}(t, \boldsymbol{y}),$

é dizer

$$\lim_{h\to 0} \|\boldsymbol{\alpha}_i\| = 0.$$

Consistência

Consistência e Convergência

Um método de passo único é consistente com o problema de Cauchy se a função incremento $\Phi(t, y, h)$, satisfaz a relação

$$\Phi(t, \boldsymbol{y}, 0) = \boldsymbol{f}(t, \boldsymbol{y}),$$

é dizer

$$\lim_{h \to 0} \|\boldsymbol{\alpha}_i\| = 0.$$

• Método do trapézio

$$\begin{cases} \boldsymbol{y}_{i+1} = \boldsymbol{y}_i + \frac{h}{2} \left[\boldsymbol{f}(t_i, \boldsymbol{y}_i) + \boldsymbol{f}(t_i + h, \boldsymbol{y}_{i+1}) \right], \\ \boldsymbol{y}(t_0) = \boldsymbol{y}_0. \end{cases}$$

Convergência

Ordem de convergência

Se existem constantes positivas C, $h_0 \in p$, independentes do tamanho de passo h, com $0 < h \le h_0$, tal que o erro global de discretização satisfaz

 $\max_{i} \|\boldsymbol{e}_{i}\| \leq Ch^{p},$

onde p é o mayor entero positivo que cumple esta condição, então o método numérico tem ordem de convergência p.

Teorema (Convergência para métodos de passo único)

Considere um método de passo único onde a função incremento $\Phi(t, \boldsymbol{y}, h)$ é Lipschitziana na segunda variable, é continua em sus argumentos e consistente, então o método é convergente.

Convergência

Ordem de convergência

Se existem constantes positivas C, $h_0 \in p$, independentes do tamanho de passo h, com $0 < h \le h_0$, tal que o erro global de discretização satisfaz

 $\max_{i} \|\boldsymbol{e}_{i}\| \leq Ch^{p},$

onde p é o mayor entero positivo que cumple esta condição, então o método numérico tem ordem de convergência p.

Teorema (Convergência para métodos de passo único)

Considere um método de passo único onde a função incremento $\Phi(t, \boldsymbol{y}, h)$ é Lipschitziana na segunda variable, é continua em sus argumentos e consistente, então o método é convergente.

Métodos de Runge-Kutta

Um método de Runge-Kutta de s-estados pode ser escrito da forma

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

onde

$$\boldsymbol{k}_j = \boldsymbol{f}\left(t_i + hc_j, \boldsymbol{y}_i + h\sum_{k=1}^s a_{jk}\boldsymbol{k}_k\right), \quad j = 1, 2, \dots, s.$$

Os coeficientes a_{jk} , b_j , e c_j são apressentados na tabela de Butcher.

Diabetes e modelos matemáticos Métodos numéricos Estimação de parâmetros Método de Euler **Métodos de passo único** Métodos de passo múltiplo

Métodos de Runge-Kutta

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

onde

$$\boldsymbol{k}_j = \boldsymbol{f}\left(t_i + hc_j, \boldsymbol{y}_i + h\sum_{k=1}^s a_{jk}\boldsymbol{k}_k\right), \quad j = 1, 2, \dots, s.$$

Os coeficientes a_{jk} , b_j , e c_j são apressentados na tabela de Butcher.

c_1	$ a_{11} $	a_{12}	•••	a_{1s}
c_2	a_{21}	a_{22}	•••	a_{2s}
c_3	a_{31}	a_{32}	• • •	a_{3s}
:	:	÷	·	÷
c_s	a_{s1}	a_{s2}	•••	a_{ss}
	b_1	b_2	•••	b_s

- Implícitos. Se $a_{jk} \neq 0$, $j = i, \dots, s$.
- Explícitos. Se a_{jk} é triangular inferior com $a_{jk} = 0$.

Tabela 1: Tabela de Butcher.

Diabetes e modelos matemáticos Métodos numéricos Estimação de parâmetros Método de Euler **Métodos de passo único** Métodos de passo múltiplo

Métodos de Runge-Kutta

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

onde

$$\boldsymbol{k}_j = \boldsymbol{f}\left(t_i + hc_j, \boldsymbol{y}_i + h\sum_{k=1}^s a_{jk}\boldsymbol{k}_k\right), \quad j = 1, 2, \dots, s.$$

Os coeficientes a_{jk} , b_j , e c_j são apressentados na tabela de Butcher.

c_1	a_{11}	a_{12}		a_{1s}
c_2	a_{21}	a_{22}		a_{2s}
c_3	a_{31}	a_{32}		a_{3s}
÷	•	÷	·	÷
c_s	a_{s1}	a_{s2}		a_{ss}
	b_1	b_2		b_s

Tabela 1: Tabela de Butcher.

- Implícitos. Se $a_{jk} \neq 0$, $j = i, \dots, s$.
- Explícitos. Se a_{jk} é triangular inferior com $a_{jk} = 0$.
- O método é consistente se

$$\sum_{j=1}^{s} b_j = 1 \quad \text{e} \quad c_j = \sum_{k=1}^{s} a_{jk}, \quad j = 1, \dots, s.$$

Diabetes e modelos matemáticos Métodos numéricos Estimação de parâmetros Método de Euler **Métodos de passo único** Métodos de passo múltiplo

Métodos de Runge-Kutta

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

onde

$$\boldsymbol{k}_j = \boldsymbol{f}\left(t_i + hc_j, \boldsymbol{y}_i + h\sum_{k=1}^s a_{jk}\boldsymbol{k}_k\right), \quad j = 1, 2, \dots, s.$$

Os coeficientes a_{jk} , b_j , e c_j são apressentados na tabela de Butcher.

c_1	a_{11}	a_{12}	•••	a_{1s}
c_2	a_{21}	a_{22}	•••	a_{2s}
c_3	a_{31}	a_{32}	•••	a_{3s}
÷	:	÷	·	÷
c_s	a_{s1}	a_{s2}	•••	a_{ss}
	b_1	b_2	• • •	b_s

Tabela 1: Tabela de Butcher.

- Implícitos. Se $a_{jk} \neq 0$, $j = i, \dots, s$.
- Explícitos. Se a_{jk} é triangular inferior com $a_{jk} = 0$.
- O método é consistente se

$$\sum_{j=1}^{s} b_j = 1 \quad \text{e} \quad c_j = \sum_{k=1}^{s} a_{jk}, \quad j = 1, \dots, s.$$

Métodos de Runge-Kutta

Método explícito de Runge-Kutta de ordem 4 com 4 estados (RK44)

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Tabela 2: Tabela de Butcher RK44.
Estabilidade

Para um problema de Cauchy da forma

$$\begin{cases} \boldsymbol{y'}(x) = \boldsymbol{f}(x, \boldsymbol{y}(x)) \\ \boldsymbol{y}(\boldsymbol{x_0}) = \boldsymbol{y}_0 + \boldsymbol{\delta}_0, \end{cases}$$

é importante garantir a aplicação de um método numéricamente estável, para o qual pequenas perturbações nas condições iniciais no produzam grandes perturbações nos resultados finais.

Estabilidade

Um MPU é estável se existe uma constante K > 0 tal que, para qualquer par de solucões numéricas y_{i+1} e \hat{y}_{i+1} obtidas de aplicar o MPU ao mesmo problema de Cauchy mas com distintas condicões iniciais, se satisfaz a desigualdade

$$\|\boldsymbol{y}_{i+1} - \widehat{\boldsymbol{y}}_{i+1}\| \leq K \|\boldsymbol{y}_0 - \widehat{\boldsymbol{y}}_0\|,$$

para $t_{i+1} \leq b \in h \to 0$.

Estabilidade

Para um problema de Cauchy da forma

$$\begin{cases} \boldsymbol{y'}(x) = \boldsymbol{f}(x, \boldsymbol{y}(x)) \\ \boldsymbol{y}(\boldsymbol{x_0}) = \boldsymbol{y}_0 + \boldsymbol{\delta}_0, \end{cases}$$

é importante garantir a aplicação de um método numéricamente estável, para o qual pequenas perturbações nas condições iniciais no produzam grandes perturbações nos resultados finais.

Estabilidade

Um MPU é estável se existe uma constante K > 0 tal que, para qualquer par de solucões numéricas y_{i+1} e \hat{y}_{i+1} obtidas de aplicar o MPU ao mesmo problema de Cauchy mas com distintas condicões iniciais, se satisfaz a desigualdade

$$\|\boldsymbol{y}_{i+1} - \widehat{\boldsymbol{y}}_{i+1}\| \leq K \|\boldsymbol{y}_0 - \widehat{\boldsymbol{y}}_0\|,$$

para $t_{i+1} \leq b \in h \to 0$.

Estabilidade absoluta

Para estudar a estabilidade absoluta é aplicado um método de passo único ao problema de Cauchy

$$\begin{cases} y'(t) &= \lambda y(t) \\ y(0) &= y_0, \end{cases}$$

com solução exata em $t=t_i$ dada por

$$y(t_i) = y_0 e^{ih\lambda}.$$

Se obtem a expressão

$$y_{i+1} = Q(\lambda h)y_i,$$

onde $Q(\lambda h)$ é denominado **fator de amplificação** e o conjunto $\Omega = \{\mu \in \mathbb{C}; |Q(\mu)| < 1\}$ é a **região de estabilidade absoluta**.

Estabilidade absoluta

Para estudar a estabilidade absoluta é aplicado um método de passo único ao problema de Cauchy

$$\begin{cases} y'(t) &= \lambda y(t) \\ y(0) &= y_0, \end{cases}$$

com solução exata em $t=t_i$ dada por

$$y(t_i) = y_0 e^{ih\lambda}.$$

Se obtem a expressão

$$y_{i+1} = Q(\lambda h)y_i,$$

onde $Q(\lambda h)$ é denominado **fator de amplificação** e o conjunto $\Omega = \{\mu \in \mathbb{C}; |Q(\mu)| < 1\}$ é a **região de estabilidade absoluta**. Diabetes e modelos matemáticos Métodos numéricos Estimação de parâmetros Método de Euler Métodos de passo único Métodos de passo múltiplo

Regiões de estabilidade para os métodos de Runge-Kutta

Figura 7: Regiões de estabilidade.

Método	Fator de Amplificação	Intervalo de estabilidade
Euler	$1 + \lambda h$	(-2, 0)
RK22	$1 + \lambda h + \frac{(\lambda h)^2}{2}$	(-2, 0)
RK33	$1 + \lambda h + \frac{(\lambda h)^2}{2} + \frac{(\lambda h)^3}{6}$	(-2.51, 0)
RK44	$1 + \lambda h + \frac{(\lambda h)^2}{2} + \frac{(\lambda h)^3}{6} + \frac{(\lambda h)^4}{24}$	(-2.78, 0)

Tabela 3: Intervalos de estabilidade absoluta.

Ordem de convergência e eficiência

$$\begin{cases} y_1'(t) = -y_1(t) - y_2(t), \\ y_2'(t) = y_1(t) - y_2(t), \\ y_1(0) = 1, \quad y_2(0) = 2 \quad t \in [0, 1] \end{cases}$$

Universidad de Narinho Lic. Matemáticas

Ordem de convergência e eficiência

$$\begin{cases} y_1'(t) = -y_1(t) - y_2(t), \\ y_2'(t) = y_1(t) - y_2(t), \\ y_1(0) = 1, \quad y_2(0) = 2 \quad t \in [0, 1] \end{cases}$$

n	h	Eul	er	RK	22	RK	33	RK	44
		$\left\ oldsymbol{e}_n ight\ _\infty$	Ordem	$\left\ oldsymbol{e}_n ight\ _\infty$	Ordem	$\left\ oldsymbol{e}_{n} ight\ _{\infty}$	Ordem	$\ oldsymbol{e}_n\ _\infty$	Ordem
2	2^{-1}	5.7965e-1		1.0785e-1		2.5547e-2		2.8820e-3	
4	2^{-2}	2.2027e-1	1.3959	2.6082e-2	2.0480	2.4744e-3	3.3680	1.6729e-4	4.1067
8	2^{-3}	9.7925e-2	1.1695	6.2440e-3	2.0625	2.6830e-4	3.2052	9.8569e-6	4.0850
16	2^{-4}	4.6436e-2	1.0764	1.5171e-3	2.0412	3.1110e-5	3.1084	5.9528e-7	4.0495
32	2^{-5}	2.2641e-2	1.0363	3.7329e-4	2.0230	3.7412e-6	3.0558	3.6530e-8	4.0264

Tabela 4: Convergência métodos de Runge-Kutta.

Diabetes e modelos matemáticos Métodos numéricos Estimação de parâmetros Método de Euler **Métodos de passo único** Métodos de passo múltiplo

Resultados numéricos

(a) Erro vs. tamanho de passo.

(b) Prueba de tempos.

Figura 9: Convergência métodos numéricos.

Estabilidade absoluta

RK44

$$\begin{array}{rl} -2 < \lambda_1 h < 0 & \Rightarrow & 0 < h < 0.6667. \\ \\ -2 < \lambda_2 h < 0 & \Rightarrow & 0 < h < 0.4. \end{array}$$

$$\begin{aligned} -2.78 < \lambda_1 h < 0 & \Rightarrow \quad 0 < h < 0.9267. \\ -2.78 < \lambda_2 h < 0 & \Rightarrow \quad 0 < h < 0.5560. \end{aligned}$$

Estabilidade absoluta

RK44

$$\begin{array}{rcl} -2 < \lambda_1 h < 0 & \Rightarrow & 0 < h < 0.6667. \\ \\ -2 < \lambda_2 h < 0 & \Rightarrow & 0 < h < 0.4. \end{array}$$

 $\begin{aligned} -2.78 < \lambda_1 h < 0 & \Rightarrow \quad 0 < h < 0.9267. \\ -2.78 < \lambda_2 h < 0 & \Rightarrow \quad 0 < h < 0.5560. \end{aligned}$

Estabilidade absoluta

Euler

$$\begin{aligned} -2 < \lambda_1 h < 0 & \Rightarrow \quad 0 < h < 0.6667. \\ -2 < \lambda_2 h < 0 & \Rightarrow \quad 0 < h < 0.4. \end{aligned}$$

 $-2.78 < \lambda_1 h < 0 \implies 0 < h < 0.9267.$ $-2.78 < \lambda_2 h < 0 \implies 0 < h < 0.5560.$

Métodos Preditor-Corretor

Os métodos de passo múltiplo se caracterizam porque a solução y_{i+1} é calculada considerando duas ou mais aproximações anteriores $y_i, y_{i-1}, y_{i-2} \dots$

 $f(t_i, y_i)$ se aproxima com interpolação e o problema de Cauchy se resuelve com integração numérica.

- Explícitos: Usa valores da função f em instantes anteriores a y_{i+1} . Exemplo: Métodos de Adams-Bashforth.
- Implícitos: Usa avaliações da função f que incluem a y_{i+1} . Exemplo: Métodos de Adams-Moulton.

Métodos Preditor-Corretor

Os métodos de passo múltiplo se caracterizam porque a solução y_{i+1} é calculada considerando duas ou mais aproximações anteriores $y_i, y_{i-1}, y_{i-2} \dots$

 $f(t_i, y_i)$ se aproxima com interpolação e o problema de Cauchy se resuelve com integração numérica.

- Explícitos: Usa valores da função f em instantes anteriores a y_{i+1} . Exemplo: Métodos de Adams-Bashforth.
- Implícitos: Usa avaliações da função f que incluem a y_{i+1} . Exemplo: Métodos de Adams-Moulton.

Método Preditor-Corretor de Adams-Bashforth-Moulton de ordem 4

$$\begin{split} & \boldsymbol{y}_{i+1}^* = \boldsymbol{y}_i + \frac{h}{24} \left[55\boldsymbol{f}(t_i, \boldsymbol{y}_i) - 59\boldsymbol{f}(t_{i-1}, \boldsymbol{y}_{i-1}) + 37\boldsymbol{f}(t_{i-2}, \boldsymbol{y}_{i-2}) - 9\boldsymbol{f}(t_{i-3}, \boldsymbol{y}_{i-3}) \right]. \\ & \boldsymbol{y}_{i+1} = \boldsymbol{y}_i + \frac{h}{24} \left[9\boldsymbol{f}(t_{i+1}, \boldsymbol{y}_{i+1}^*) + 19\boldsymbol{f}(t_i, \boldsymbol{y}_i) - 5\boldsymbol{f}(t_{i-1}, \boldsymbol{y}_{i-1}) + \boldsymbol{f}(t_{i-2}, \boldsymbol{y}_{i-2}) \right]. \end{split}$$

Métodos Preditor-Corretor

Os métodos de passo múltiplo se caracterizam porque a solução y_{i+1} é calculada considerando duas ou mais aproximações anteriores $y_i, y_{i-1}, y_{i-2} \dots$

 $f(t_i, y_i)$ se aproxima com interpolação e o problema de Cauchy se resuelve com integração numérica.

- Explícitos: Usa valores da função f em instantes anteriores a y_{i+1} . Exemplo: Métodos de Adams-Bashforth.
- Implícitos: Usa avaliações da função f que incluem a y_{i+1} . Exemplo: Métodos de Adams-Moulton.

Método Preditor-Corretor de Adams-Bashforth-Moulton de ordem 4

$$\begin{aligned} & \boldsymbol{y}_{i+1}^* = \boldsymbol{y}_i + \frac{h}{24} \left[55\boldsymbol{f}(t_i, \boldsymbol{y}_i) - 59\boldsymbol{f}(t_{i-1}, \boldsymbol{y}_{i-1}) + 37\boldsymbol{f}(t_{i-2}, \boldsymbol{y}_{i-2}) - 9\boldsymbol{f}(t_{i-3}, \boldsymbol{y}_{i-3}) \right]. \\ & \boldsymbol{y}_{i+1} = \boldsymbol{y}_i + \frac{h}{24} \left[9\boldsymbol{f}(t_{i+1}, \boldsymbol{y}_{i+1}^*) + 19\boldsymbol{f}(t_i, \boldsymbol{y}_i) - 5\boldsymbol{f}(t_{i-1}, \boldsymbol{y}_{i-1}) + \boldsymbol{f}(t_{i-2}, \boldsymbol{y}_{i-2}) \right]. \end{aligned}$$

Resultado numérico

Ordem de convergência e eficiência

$$\begin{cases} y_1'(t) = y_1(t) - y_2(t) - e^t, \\ y_2'(t) = y_1(t) + y_2(t) + 2e^t, \\ y_1(0) = -1, \quad y_2(0) = -1 \quad t \in [0, 4] \end{cases}$$

h	AB4		ABM4		ABM5		RK44	
	$\left\ oldsymbol{e}_n ight\ _\infty$	Ordem						
2^{-3}	6.5337e-02		3.0883e-03		3.1354e-03		3.4668e-03	
2^{-4}	4.9059e-03	3.7353	2.4353e-04	3.6646	1.0932e-04	4.8420	2.2789e-04	3.9272
2^{-5}	3.3439e-04	3.8749	2.1139e-05	3.5261	3.5690e-06	4.9369	1.4596e-05	3.9647
2^{-6}	2.1796e-05	3.9394	1.5170e-06	3.8007	1.1365e-07	4.9728	9.2335e-07	3.9826
2^{-7}	1.3906e-06	3.9702	1.0108e-07	3.9077	3.5821e-09	4.9876	5.8056e-08	3.9914

Tabela 5: Convergência métodos numéricos.

Diabetes e modelos matemáticos Métodos numéricos Estimação de parâmetros Método de Euler Métodos de passo único Métodos de passo múltiplo

Resultado numérico

Figura 10: Convergência métodos numéricos.

Formulação do problema Mínimos quadrados

Estimação de parâmetros

Tiempo (min)	glucosa (mg/dl)	insulina ($\mu U/ml$)		
0	92	11		
2	350	26		
4	287	130		
6	251	85		
8	240	51		
10	216	49		
12	211	45		
14	205	41		
16	196	35		
19	192	30		
22	172	30		
27	163	27		
32	142	30		
42	124	22		
52	105	15		
62	92	15		
72	84	11		
82	77	10		
92	82	8		
102	81	11		
122	82	7		
142	82	8		
162	85	8		
182	90	7		
(C) Dados, R. Bergman, 1986.				

Formulação do problema

Para um conjunto de dados (t_i, y_i) , i = 1, 2, ..., m, se deseja achar o vetor \boldsymbol{x} de parâmetros $(x_1, x_2, ..., x_n)^T$ que faça o melhor ajuste na função modelo

 $\boldsymbol{f}(t,\boldsymbol{x}) = x_1\phi_1(t) + x_2\phi_2(t) + \dots + x_n\phi_n(t).$

 $y = x_1 + x_2 t$

Formulação do problema

Para um conjunto de dados (t_i, y_i) , i = 1, 2, ..., m, se deseja achar o vetor \boldsymbol{x} de parâmetros $(x_1, x_2, ..., x_n)^T$ que faça o melhor ajuste na função modelo

$$\boldsymbol{f}(t,\boldsymbol{x}) = x_1\phi_1(t) + x_2\phi_2(t) + \dots + x_n\phi_n(t).$$

 $y = x_1 + x_2 t$

Mínimos quadrados lineares

$$\boldsymbol{A}^{T}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{A}^{T}\boldsymbol{y}$$
 (Equações normais)

Mínimos quadrados no-lineares

- Método de optimização de Newton.
- Método de Gauss-Newton.
- Método de Levenberg-Marquardt.

Mínimos quadrados lineares

$$\boldsymbol{A}^{T}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{A}^{T}\boldsymbol{y}$$
 (Equações normais)

Mínimos quadrados no-lineares

- Método de optimização de Newton.
- Método de Gauss-Newton.
- Método de Levenberg-Marquardt.

$$\boldsymbol{F}(\boldsymbol{x}) \approx \boldsymbol{F}(\boldsymbol{x}_k) + \left(\left(\boldsymbol{x} - \boldsymbol{x}_k \right)^T \nabla \right) \boldsymbol{F}(\boldsymbol{x}_k) + \frac{1}{2} \left(\left(\boldsymbol{x} - \boldsymbol{x}_k \right)^T \nabla \right)^2 \boldsymbol{F}(\boldsymbol{x}_k).$$

Para minimizar fazemos a deriva e igualamos zero

$$\nabla F(\boldsymbol{x}) = \nabla F(\boldsymbol{x}_k) + (\boldsymbol{x} - \boldsymbol{x}_k) \nabla^2 F(\boldsymbol{x}_k) = 0.$$

$$\boldsymbol{F}(\boldsymbol{x}) \approx \boldsymbol{F}(\boldsymbol{x}_k) + \left((\boldsymbol{x} - \boldsymbol{x}_k)^T \nabla \right) \boldsymbol{F}(\boldsymbol{x}_k) + \frac{1}{2} \left((\boldsymbol{x} - \boldsymbol{x}_k)^T \nabla \right)^2 \boldsymbol{F}(\boldsymbol{x}_k).$$

Para minimizar fazemos a deriva e igualamos zero

$$\nabla \boldsymbol{F}(\boldsymbol{x}) = \nabla \boldsymbol{F}(\boldsymbol{x}_k) + (\boldsymbol{x} - \boldsymbol{x}_k) \nabla^2 \boldsymbol{F}(\boldsymbol{x}_k) = 0.$$

Logo isolando \boldsymbol{x} obtemos

$$\boldsymbol{x} = \boldsymbol{x}_k - \left(\nabla^2 \boldsymbol{F}(\boldsymbol{x}_k) \right)^{-1} \nabla \boldsymbol{F}(\boldsymbol{x}_k).$$

$$\boldsymbol{F}(\boldsymbol{x}) \approx \boldsymbol{F}(\boldsymbol{x}_k) + \left((\boldsymbol{x} - \boldsymbol{x}_k)^T \nabla \right) \boldsymbol{F}(\boldsymbol{x}_k) + \frac{1}{2} \left((\boldsymbol{x} - \boldsymbol{x}_k)^T \nabla \right)^2 \boldsymbol{F}(\boldsymbol{x}_k).$$

Para minimizar fazemos a deriva e igualamos zero

$$\nabla \boldsymbol{F}(\boldsymbol{x}) = \nabla \boldsymbol{F}(\boldsymbol{x}_k) + (\boldsymbol{x} - \boldsymbol{x}_k) \nabla^2 \boldsymbol{F}(\boldsymbol{x}_k) = 0.$$

Logo isolando \boldsymbol{x} obtemos

$$\boldsymbol{x} = \boldsymbol{x}_k - \left(\nabla^2 \boldsymbol{F}(\boldsymbol{x}_k)\right)^{-1} \nabla \boldsymbol{F}(\boldsymbol{x}_k).$$

De onde a partir de uma aproximaçãi inicial x_0 temos a forma iterativa

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \left(\nabla^2 \boldsymbol{F}(\boldsymbol{x}_k)\right)^{-1} \nabla \boldsymbol{F}(\boldsymbol{x}_k), \quad k = 1, 2, \dots$$

$$\boldsymbol{F}(\boldsymbol{x}) \approx \boldsymbol{F}(\boldsymbol{x}_k) + \left((\boldsymbol{x} - \boldsymbol{x}_k)^T \nabla \right) \boldsymbol{F}(\boldsymbol{x}_k) + \frac{1}{2} \left((\boldsymbol{x} - \boldsymbol{x}_k)^T \nabla \right)^2 \boldsymbol{F}(\boldsymbol{x}_k).$$

Para minimizar fazemos a deriva e igualamos zero

$$\nabla \boldsymbol{F}(\boldsymbol{x}) = \nabla \boldsymbol{F}(\boldsymbol{x}_k) + (\boldsymbol{x} - \boldsymbol{x}_k) \nabla^2 \boldsymbol{F}(\boldsymbol{x}_k) = 0.$$

Logo isolando \boldsymbol{x} obtemos

$$\boldsymbol{x} = \boldsymbol{x}_k - \left(\nabla^2 \boldsymbol{F}(\boldsymbol{x}_k)\right)^{-1} \nabla \boldsymbol{F}(\boldsymbol{x}_k).$$

De onde a partir de uma aproximaçãi inicial x_0 temos a forma iterativa

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \left(\nabla^2 \boldsymbol{F}(\boldsymbol{x}_k)\right)^{-1} \nabla \boldsymbol{F}(\boldsymbol{x}_k), \quad k = 1, 2, \dots$$

$$abla F(oldsymbol{x}) =
abla r(oldsymbol{x})r(oldsymbol{x}) = oldsymbol{J}_{oldsymbol{r}}(oldsymbol{x})^T oldsymbol{r}(oldsymbol{x})^T + \sum_{i=1}^m r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2 r_i(oldsymbol{x})
abla^2$$

Método de optimização de Newton

$$\left\{egin{aligned} &\left(J_{\boldsymbol{r}}(x_k)^TJ_{\boldsymbol{r}}(x_k)+S(x_k)
ight)p_k^N=-J_{\boldsymbol{r}}(x_k)^T\boldsymbol{r}(x_k)\ &x_{k+1}=x_k+p_k^N. \end{aligned}
ight.$$

$$\boldsymbol{F}(\boldsymbol{x}) \approx \boldsymbol{F}(\boldsymbol{x}_k) + \left((\boldsymbol{x} - \boldsymbol{x}_k)^T \nabla \right) \boldsymbol{F}(\boldsymbol{x}_k) + \frac{1}{2} \left((\boldsymbol{x} - \boldsymbol{x}_k)^T \nabla \right)^2 \boldsymbol{F}(\boldsymbol{x}_k).$$

Para minimizar fazemos a deriva e igualamos zero

$$\nabla \boldsymbol{F}(\boldsymbol{x}) = \nabla \boldsymbol{F}(\boldsymbol{x}_k) + (\boldsymbol{x} - \boldsymbol{x}_k) \nabla^2 \boldsymbol{F}(\boldsymbol{x}_k) = 0.$$

Logo isolando \boldsymbol{x} obtemos

$$\boldsymbol{x} = \boldsymbol{x}_k - \left(\nabla^2 \boldsymbol{F}(\boldsymbol{x}_k) \right)^{-1} \nabla \boldsymbol{F}(\boldsymbol{x}_k).$$

De onde a partir de uma aproximaçãi inicial x_0 temos a forma iterativa

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \left(\nabla^2 \boldsymbol{F}(\boldsymbol{x}_k) \right)^{-1} \nabla \boldsymbol{F}(\boldsymbol{x}_k), \quad k = 1, 2, \dots$$

$$\nabla F(\boldsymbol{x}) = \nabla r(\boldsymbol{x})r(\boldsymbol{x}) = \boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x})^{T}r(\boldsymbol{x}).$$

$$\nabla^2 \boldsymbol{F}(\boldsymbol{x}) = \nabla \boldsymbol{r}(\boldsymbol{x}) \nabla \boldsymbol{r}(\boldsymbol{x})^T + \sum_{i=1}^m r_i(\boldsymbol{x}) \nabla^2 r_i(\boldsymbol{x})$$
$$= \boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x})^T \boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}) + \boldsymbol{S}(\boldsymbol{x}).$$

$$\begin{cases} \left(\boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}_k)^T \boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}_k) + \boldsymbol{S}(\boldsymbol{x}_k) \right) \boldsymbol{p}_k^N = -\boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}_k)^T \boldsymbol{r}(\boldsymbol{x}_k) \\ \\ \boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{p}_k^N. \end{cases}$$

Método de Gauss-Newton e Levenberg-Marquardt

Método de Gauss-Newton

$$\begin{cases} \left(\boldsymbol{J}_{\boldsymbol{r}}(x_k)^T \boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}_k) \right) \boldsymbol{p}_k^{GN} = -\boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}_k)^T \boldsymbol{r}(\boldsymbol{x}_k), \\ \\ \boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{p}_k^{GN}. \end{cases}$$

•
$$\nabla^2 F(\boldsymbol{x}) \approx \boldsymbol{J}^T(x_k) \boldsymbol{J}(x_k)$$
, isto é $\boldsymbol{S}(\boldsymbol{x}) = 0$.

Método de Levenberg-Marquardt

$$\begin{cases} \left(\boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}_k)^T \boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}_k) + \mu_k \boldsymbol{I}\right) \boldsymbol{p}_k^{LM} = -\boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}_k)^T \boldsymbol{r}(\boldsymbol{x}_k), \\ \\ \boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{p}_k^{LM}. \end{cases}$$

• $\nabla^2 \boldsymbol{F}(\boldsymbol{x}) \approx \boldsymbol{J}^T(x_k) \boldsymbol{J}(x_k) + \boldsymbol{\mu_k I}.$

Resultados numéricos-modelo de Ackerman

Parâmetros	Valores estimados	Valores (2014)	Diferença %
m_1	2.82467e-02	2.73281e-02	3.25206
m_2	1.22845e-01	6.60192e-02	46.2581
m_3	6.80561e-01	5.64145e-01	20.6358
m_4	1.06077e-01	1.34963e-01	21.4029

Intervalo de estabilidade				
• Euler	(0, 1.2533).			
• RK44	(0, 1.7421).			

Tabela 6: Parâmetros estimados modelo de Ackerman.

Figura 12: Solução numérica método de Euler, com h = 1.2.

Resultados numéricos-modelo de Ackerman

Parâmetros	Valores estimados	Valores (2014)	Diferença %
m_1	2.82467e-02	2.73281e-02	3.25206
m_2	1.22845e-01	6.60192e-02	46.2581
m_3	6.80561e-01	5.64145e-01	20.6358
m_4	1.06077e-01	1.34963e-01	21.4029

Intervalo de estabilidade				
• Euler	(0, 1.2533).			
• RK44	(0, 1.7421).			

Tabela 6: Parâmetros estimados modelo de Ackerman.

Resultados numéricos-modelo de Ackerman

Parâmetros	Valores estimados	Valores (2014)	Diferença %
m_1	2.82467e-02	2.73281e-02	3.25206
m_2	1.22845e-01	6.60192e-02	46.2581
m_3	6.80561e-01	5.64145e-01	20.6358
m_4	1.06077e-01	1.34963e-01	21.4029

Intervalo de estabilidade				
• Euler	(0, 1.2533).			
• RK44	(0, 1.7421).			

Tabela 6: Parâmetros estimados modelo de Ackerman.

Modelo de Glucose Simplificado

Prueba de tolerância à glucose oral e modelo de Ackerman

- $G(t) = G_b + Ae^{-\alpha t} \cos(\omega t \delta).$
- 5 parâmetros de ajuste.

Paciente 1: T = 3.0402.
Paciente 2: T = 5.1944.

• Usar $\alpha \in \omega$ para diagnosticar diabetes.

$$\omega_0 = \sqrt{\alpha^2 + \omega^2}, \Rightarrow T = \frac{2\pi}{\omega_0}.$$

t(hr)	Paciente 1	Paciente 2
0	70	100
0.5	150	185
0.75	165	210
1	145	220
1.5	90	195
2	75	175
2.5	65	105
3	75	100
4	80	85
6	75	90

Tabela 7: Níveis de Glucose [mg/dL]. Mahaffy, 2010.

Parâmetro	Paciente 1	Paciente 2
G_b	79.1814	95.2117
А	171.5488	263.1672
α	0.9927	0.6335
ω	1.8127	1.0304
δ	1.6325	1.5621

Tabela 8: Parâmetros estimados.

Modelo de Glucose Simplificado

Prueba de tolerância à glucose oral e modelo de Ackerman

- $G(t) = G_b + Ae^{-\alpha t} \cos(\omega t \delta).$
- 5 parâmetros de ajuste.
- Usar $\alpha \in \omega$ para diagnosticar diabetes.

$$\omega_0 = \sqrt{\alpha^2 + \omega^2}, \Rightarrow T = \frac{2\pi}{\omega_0}.$$

t(hr)	Paciente 1	Paciente 2
0	70	100
0.5	150	185
0.75	165	210
1	145	220
1.5	90	195
2	75	175
2.5	65	105
3	75	100
4	80	85
6	75	90

Tabela 7: Níveis de Glucose [mg/dL]. Mahaffy, 2010.

Parâmetro	Paciente 1	Paciente 2
G_b	79.1814	95.2117
Α	171.5488	263.1672
α	0.9927	0.6335
ω	1.8127	1.0304
δ	1.6325	1.5621

Tabela 8: Parâmetros estimados.

- Paciente 1: T = 3.0402.
- Paciente 2: T = 5.1944.

Nota: T > 4 indica diabetes.

Métodos numéricos Estimação de parâmetros Resultados numéricos

Modelo de Ackerman Modelo mínimo de Bergman

Modelo de Glucose Simplificado

Figura 13: Modelos de Glucose.

Modelo mínimo de Bergman

Parâmetros	Valores estimados	
	Paciente sano	Paciente 2
m_1	4.111765e-02	1.771358e-02
m_2	8.761007e-03	7.630303e-02
m_3	4.994567e-06	1.008268e-05
m_4	5.309902e-03	5.615203e-03
m_5	8.461203e + 01	1.46879e + 02
m_6	4.369277e-01	5.662352e-02
SI	5.70091e-04	1.321399e-04

Tabela 9: Parâmetros modelo Mínimo. Pillonetto, 2002.

$$\begin{aligned} G'(t) &= -m_1(G(t) - Gb) - X(t)G(t), \quad G(0) = G_0 \\ X'(t) &= -m_2X(t) + m_3\left[I(t) - Ib\right], \quad X(0) = 0 \\ I'(t) &= m_4\left[G(t) - m_5\right]t - m_6(I(t) - Ib), \quad I(0) = I_0. \end{aligned}$$

Rango normal índice de sensibilidade

2.1e-04 a 18.2e-04 $[\mu U/min]$.

Métodos numéricos Estimação de parâmetros Resultados numéricos

Modelo de Ackerman Modelo mínimo de Bergman

Modelo mínimo de Bergman

Figura 14: Solução numérica de paciente sano e otro diabético.

Métodos numéricos Estimação de parâmetros Resultados numéricos

Modelo de Ackerman Modelo mínimo de Bergman

Modelo mínimo de Bergman

Figura 15: Solução numérica de paciente sano e otro diabético.
Métodos numéricos Estimação de parâmetros Resultados numéricos

Modelo de Ackerman Modelo mínimo de Bergman

Modelo mínimo de Bergman

Figura 16: Solução numérica de paciente sano e otro diabético.

Índice de sensibilidade

	G_0	m_1	m_2	m_3	S_I
Parâmetros estimados	409	7.4632e-03	4.5430e-01	8.9578e-05	1.9718e-04
Parâmetros publicados	409	8.7000e-03	9.8000e-02	2.0580e-05	2.1000e-04
Diferença %	0	14.2160	78.4283	77.0256	6.1047

Tabela 11: Comparação de parâmetros estimados para o paciente 5.

Métodos numéricos Estimação de parâmetros Resultados numéricos

Modelo de Ackerman Modelo mínimo de Bergman

Concluções

Universidad de Narinho Lic. Matemáticas

Bibliografía

- Ackerman, E., Rosevear, J. W., & McGuckin, W. F. (1964). A mathematical model of the glucose-tolerance test. *Physics in Medicine and Biology.*
- Alpala, R. (2017). Soluciones numéricas para un modelo lineal y otro no-lineal aplicados a la diabetes. Tesis pregrado, Universidad de Nariño.

- Bergman, R. N., Ider, Y. Z., Bowden, C. R., and Cobelli, C. (1979). Quantitative estimation of insulin sensitivity. *American Journal of Physiology-*Endocrinology And Metabolism, 236(6): E667-677.
- Butcher, J. C. (2008). Numerical methods for ordinary differential equations. John Wiley & Sons.

- Cisneros, I. A. (2014). Mathematical models for diabetes. *Tesis de pregrado, Universidad de Cantabria*.
- De Gaetano, A. and Arino, O. (2000). Mathematical modelling of the intravenous glucose tolerance test. *Journal of mathematical biology*, 40(2): 136-168.
- Mahaffy, J. M., & Edelstein-Keshet, L. (2010). Modeling Diabetes.

Pillonetto, G., Sparacino, G., Magni, P., Bellazzi, R., & Cobelli, C. (2002). Minimal model SI=0 problem in NIDDM subjects: nonzero bayesian estimates with credible confidence intervals.