Adriana Neumann de Oliveira

ELAM - UFABC - September, 2018

4 日 > 4 日 >

Interacting Particle Systems

Physical motivation

- Underlying scenario: we look for the evolution of a physical system, e.g. the spread of a gas confined to a finite volume.
- Two scales are considered:
 - a macroscopic one.
 - ► a microscopic one.
- Goal: describe the macroscopic evolution from the microscopic interaction between particles.
- Due to the huge number of molecules it is hard to describe precisely the microscopic state of a system.

History

Ludwig Eduard Boltzmann (February 20, 1844 – September 5, 1906)

Frank Spitzer (July 24, 1926 – February 1, 1992)

- Development of statistical mechanics.
- How the properties of atoms determine the physical properties of matter (such as viscosity, thermal conductivity, and diffusion)?
- Interaction of Markov processes. Advances in Mathematics, 1970.
- Each particle performs a random walk subject to some restriction.
- The random motion of particles is an interacting particle system.

Scheme

▲□▶▲□▶▲≧▶▲≧▶ ≧ りへ⊙

Random Walk

Random walk

Consider a sequence of successive tosses of a fair coin and let $X_n = 1$ if the *n*-th toss is heads and $X_n = -1$ if the *n*-th toss is tails.

Let $X_0 = 0$ and for $n \ge 1$, let $S_n = X_1 + \cdots + X_n$ be the position of the random walk at time *n*. $\mathbb{E}[S_n] = 0$ and $Var(S_n) = \mathbb{E}[S_n^2] = n$, for any *n*. For any $a, b \in \mathbb{R}$ with a < b:

$$\lim_{n \to \infty} \mathbb{P}(a \le \frac{S_n}{\sqrt{n}} \le b) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

Last statement is the **De Moivre-Laplace's** Central Limit Theorem.

Poisson Processes

Poisson Process I

Let us count the number of calls that arrive at a call center up to time t or the number of claims that arrive at an insurance company up to time t. Under certain hypothesis, each of these experiences can be represented as:

At the call center: the first call was received at time t_1 , the second at time t_2 and so on.

At the insurance company: the first claim was received at time t_1 , the second at time t_2 and so on.

Now let $A_{s,t}^k$ be the event "in the time interval (s, s + t] the call center receives exactly k calls". If we denote the previous result by N(t) (note that it is a function of t), then the previous event corresponds to N(s + t) - N(s) = k, where N is a function belonging to the set of functions

 $\mathcal{X} := \{ N : [0, \infty) \to \{0, 1, 2, \cdots\} : \exists t_1 < t_2 < \cdots$ $N(t) = 0, \text{ for all } t \in [0, t_1), N(t) = 1, \text{ for all } t \in [t_1, t_2), \cdots \}$

Let us now see what are the hypothesis that we have to assume.

Poisson Process III

- ► Stationary increments: the probability that *k* calls arrive in (s, s + t] depends only on *t* (the length of the interval): $\mathbb{P}(A_{s,t}^k) = \mathbb{P}(A_{0,t}^k) := P_k(t)$.
- ► Independent increments: the number of calls that arrive at disjoint time intervals are independent: $A_{s,t}^k$ is independent of $A_{u,v}^j$ for any choice of k and j as long as $(s, s + t] \cap (u, u + v] = \emptyset$.
- Calls do not arrive simultaneously: the conditional probability of having two or more calls during the time interval (0, t] given that arrived one or more class in the same time interval, tends to 0 as t → 0:

$$\frac{1 - P_0(t) - P_1(t)}{1 - P_0(t)} \to 0.$$

We conclude that $P_k(t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$, where $\lambda = -\log(P_0(1))$.

The dynamics - Infinitesimal Generator

Notations: $I_n = \{1, ..., n-1\},\$

 $\eta(x) = \begin{cases} 1, & \text{if site x is occupied,} \\ 0, & \text{if site x is vacant.} \end{cases}$

and $\eta = {\eta(x)} \in {\{0, 1\}}^{I_n}$ is the configuration of particles.

 $\{\eta_t = \{\eta_t(x)\}, t \ge 0\}$ is the exclusion process with slow boundary.

The infinitesimal generator of this process is $L_n = L_{n,0} + L_{n,b}$, which acts on functions $f : \{0, 1\}^{I_n} \to \mathbb{R}$ as

$$(L_{n,0}f)(\eta) = \sum_{x=1}^{n-2} \left[f(\eta^{x,x+1}) - f(\eta) \right]$$

and

$$(L_{n,b}f)(\eta) = \left[\frac{\alpha}{n^{\theta}}(1-\eta(1)) + \frac{1-\alpha}{n^{\theta}}\eta(1)\right] \left[f(\eta^{1}) - f(\eta)\right] \\ + \left[\frac{\beta}{n^{\theta}}(1-\eta(n-1)) + \frac{1-\beta}{n^{\theta}}\eta(n-1)\right] \left[f(\eta^{n-1}) - f(\eta)\right]$$

◆□▶ ◆母▶ ◆重▶ ◆重▶ 三 のへゆ

The spatial density of particles

Empirical measure

$$\pi^{n}(\eta, du) := \frac{1}{n} \sum_{x \in I_{n}} \eta(x) \,\delta_{\frac{x}{n}}(du)$$
$$\int_{0}^{1} H(u) \,\pi^{n}(\eta, du) = \frac{1}{n} \sum_{x \in I_{n}} \eta(x) H(\frac{x}{n}) \to \int_{0}^{1} H(u) \,\rho(u) \,du$$
$$\pi^{n}(\eta, du) \Rightarrow \rho(u) \,du$$

Hydrostatic Limit [Baldasso, Menezes, Neumann, Souza]

The stationary profile (density of particles)

Let μ_n^{ss} be the stationary probability measure in $\{0, 1\}^{I_n}$ for the SSEP with slow boundary, which has infinitesimal generator given by $n^2 L_n$. Then, for all $\delta > 0$ and continuous function $H : [0, 1] \rightarrow \mathbb{R}$,

$$\lim_{n \to +\infty} \mu_n^{ss} \left[\left| \frac{1}{n} \sum_{x \in I_n} \eta(x) H(\frac{x}{n}) - \int_0^1 H(u) \bar{\rho}(u) du \right| > \delta \right] = 0,$$

Stationary probability μ_n^{ss}

► If $\alpha = \beta$, then the stationary (and also reversible) measure μ_n^{ss} is the Bernoulli product measure with parameter $\alpha = \beta \in (0, 1)$,

$$\mu_n^{ss}(\eta) = \nu_\alpha^n(\eta) = \prod_{x \in I_n} [\eta(x)\alpha + (1 - \eta(x))(1 - \alpha)].$$

In this case we say that the system is in equilibrium.

• If $\alpha \neq \beta$, then the stationary measure μ_n^{ss} is given by

$$\mu_n^{ss}(\eta) = \frac{1}{Z_{n-1}} \langle W | \prod_{x \in I_n} [\eta(x)D + (1 - \eta(x))E] | V \rangle,$$

where Z_{n-1} is a constant, D and E are square matrix (ansatz matrix) and $|V\rangle$ and $\langle W|$ are vectors satisfying:

$$DE - ED = D + E$$
$$W | \left(\frac{\alpha}{n^{\theta}} E - \frac{(1-\alpha)}{n^{\theta}} D \right) = \langle W |$$
$$\left(\frac{\beta}{n^{\theta}} D - \frac{(1-\beta)}{n^{\theta}} E \right) | V \rangle = | V \rangle.$$

*B. Derrida, M. R. Evans, V. Hakin e V. Pasquier, 1993

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶ ▲ 필 ● ∽ Q @

Outline of the proof of hydrostatic limit

$$\mu_n^{ss} \left[\eta : \left| \frac{1}{n} \sum_{x \in I_n} H(\frac{x}{n}) \eta(x) - \int_0^1 H(u) \overline{\rho}(u) \, du \right| > \delta \right]$$

Compare ρ
(x/n) with ρⁿ(x) := E_{μ_n^{ss}}[η(x)] (the stationary empirical profile) in the following way:

$$\lim_{n \to \infty} \left(\max_{x \in I_n} \left| \rho^n(x) - \overline{\rho}(\frac{x}{n}) \right| \right) = 0.$$

• Compare $\eta(x)$ with $\rho^n(x) := \mathbb{E}_{\mu_n^{ss}}[\eta(x)]$.

To do this we need to bound the two points correlation function,

$$\varphi^n(x, y) := \mathbb{E}_{\mu_n^{ss}} \left[\left(\eta(x) - \mathbb{E}_{\mu_n^{ss}} [\eta(x)] \right) \left(\eta(y) - \mathbb{E}_{\mu_n^{ss}} [\eta(y)] \right) \right]$$

in the following way

$$\max_{0 < x < y < n} \left| \varphi^n(x, y) \right| \le \frac{C}{n^{\theta} + n}$$

for some positive constant C > 0.

Empirical profile

Fix an initial measure μ_n in I_n . For $x \in I_n$ and t > 0, let

 $\rho_t^n(x) := \mathbb{E}_{\mu_n}[\eta_t(x)].$

We extend the definition to the boundary by setting

 $\rho_t^n(0) = \alpha$ and $\rho_t^n(n) = \beta$, for all $t \ge 0$.

 ρ_t^n is a solution of

 $\begin{cases} \partial_t \rho_t^n(x) = \Delta_n^{\theta} \rho_t^n(x), & t > 0, \ x \in I_n, \\ \rho_t^n(0) = \alpha \text{ and } \rho_t^n(n) = \beta, \ t > 0, \end{cases}$

where Δ_n^{θ} acts on functions $f: I_n \cup \{0, n\} \to \mathbb{R}$ as

$$\begin{split} &\Delta_n^{\theta} f(x) = n^2 (f(x+1) - f(x)) + n^2 (f(x-1) - f(x)), \quad x \in \{2, \dots, n-2\}, \\ &\Delta_n^{\theta} f(1) = n^2 (f(2) - f(1)) + \frac{n^2}{n^{\theta}} (f(0) - f(1)), \\ &\Delta_n^{\theta} f(n-1) = \frac{n^2}{n^{\theta}} (f(n) - f(n-1)) + n^2 (f(n-2) - f(n-1)) \end{split}$$

▲□▶ ▲圖▶ ▲ ≧▶ ▲ ≧▶ · ≧ · • ○ ९ ○

Stationary empirical profile $\rho^n(x) = \mathbb{E}_{\mu_s^{ss}}[\eta(x)]$ is a solution of

$$\begin{cases} 0 = \Delta_n^{\theta} \rho^n(x) = n^2 (\rho^n(x+1) - f(x)) + n^2 (\rho^n(x-1) - \rho^n(x)), & x \in \{2, \dots, n-2\}, \\ 0 = \Delta_n^{\theta} \rho^n(1) = n^2 (\rho^n(2) - \rho^n(1)) + \frac{n^2}{n^{\theta}} (\rho^n(0) - \rho^n(1)), \\ 0 = \Delta_n^{\theta} \rho^n(n-1) = \frac{n^2}{n^{\theta}} (\rho^n(n) - \rho^n(n-1)) + n^2 (\rho^n(n-2) - f(n-1)). \end{cases}$$

Then

$$o^n(x) = a_n x + b_n, \quad x \in I_n,$$

where $a_n = \frac{\beta - \alpha}{2n^{\theta} + n - 2}$ and $b_n = \alpha + a_n(n^{\theta} - 1)$.

The stationary correlation function of the occupation of two sites *x* < *y*

 $\varphi^n(x, y)$ is a solution of

W

 $A_n^{\theta}\varphi^n(x, y) = a_n^2 \mathbf{1}_{y=x+1}$, if $(x, y) \in V_n$, and $\varphi^n(x, y) = 0$ if x = 0 or y = n.

Then, is possible to compute that

$$\varphi^{-}(x, y) = -a_n^{-} \cdot I_u^{-},$$

ere $T_u^{\theta} := \mathbb{E}\left[\int_0^{\infty} \mathbf{1}_{\mathbf{X}_u^{\theta}(\mathbf{s}) \in \mathbf{D}_n} \, \mathbf{ds}\right]$ and $u = (x, y) \in V_n.$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 • りへの

If $\theta = 0$ and u = (x, y), we have $T_u^0 = \frac{x(n-y)}{n-1}$. We will compare T_u^0 and T_u^θ using a coupling.

$$T_{u}^{\theta} \leq \mathbb{E}[D^{(1)} + \dots + D^{(Y)}]$$

= $\sum_{j\geq 1} \mathbb{E}[(D^{(1)} + \dots + D^{(j)})\mathbf{1}_{Y=j-1}]$
= $\sum_{j\geq 1} \mathbb{P}(Y = j - 1) \sum_{i=1}^{j} T_{u_{i}}^{0}$
 $\leq \sum_{j\geq 1} \mathbb{P}(Y = j - 1)C(n + j - 1)$
 $\leq C(n + n^{\theta}).$
 $n(x, y)| \leq C(n + n^{\theta})a_{n}^{2}.$

 $|\varphi|$

▲□▶ 4 □▶ 4 三▶ 4 三▶ 4 □▶

Empirical profile $\theta = 0$

$$\begin{cases} \partial_t \rho_t^n(x) = \Delta_n \rho_t^n(x), & t > 0, \ x \in I_n, \\ \rho_t^n(0) = \alpha \text{ and } \rho_t^n(n) = \beta, \ t > 0, \end{cases}$$

where Δ_n acts on functions $f: I_n \cup \{0, n\} \rightarrow \mathbb{R}$ as

$$\Delta_n f(x) = \Delta_n^0 f(x) = n^2 (f(x+1) - f(x)) + n^2 (f(x-1) - f(x)), \quad x \in I_n$$

 $\theta = 1$ $\overline{(f(0) = \alpha \text{ and } f(n) = \beta)}$

$$\Delta_n^1 f(1) = n^2 (f(2) - f(1)) + \frac{n^2}{n^1} (f(0) - f(1))$$
$$= n \left(\nabla_n^+ f(1) + (\alpha - f(1)) \right)$$

$$\begin{split} \Delta_n^1 f(n-1) &= \frac{n^2}{n^1} (f(n) - f(n-1)) + n^2 (f(N-2) - f(n-1)) \\ &= n \big((\beta - f(n-1)) - \nabla_n^- f(n-1) \big) \end{split}$$

▲□▶ ▲□▶ ▲ Ξ▶ ▲ Ξ▶ Ξ · · · ○

Hydrodynamic equation

$$\theta < 1: \begin{cases} \partial_t \rho(t, u) &= \Delta \rho(t, u), \quad t > 0, \quad u \in (0, 1), \\ \rho(t, 0^+) &= \alpha, \quad t > 0, \\ \rho(t, 1^-) &= \beta, \quad t > 0. \end{cases}$$
 Dirichlet boundary conditions
$$\theta = 1: \begin{cases} \partial_t \rho(t, u) &= \Delta \rho(t, u), \quad t > 0, \quad u \in (0, 1), \\ \partial_u \rho(t, 0^+) &= \rho(t, 0^+) - \alpha, \quad t > 0 \\ \partial_u \rho(t, 1^-) &= \beta - \rho(t, 1^-), \quad t > 0. \end{cases}$$
 Robin boundary conditions
$$\theta > 1: \begin{cases} \partial_t \rho(t, u) &= \Delta \rho(t, u), \quad t > 0, \quad u \in (0, 1) \\ \partial_u \rho(t, 0^+) &= 0, \quad t > 0, \\ \partial_u \rho(t, 1^-) &= 0, \quad t > 0. \end{cases}$$
 Neumann boundary conditions

Empirical profile

 $\theta > 1$

$$\begin{cases} \Delta_n^{\theta} f(1) = n \nabla_n^+ f(1) - \frac{n}{n^{\theta}} \nabla_n^+ f(0) \\ \Delta_n^{\theta} f(n-1) = \frac{n}{n^{\theta}} \nabla_n^+ f(n-1) - n \nabla_n^- f(n-1) \end{cases}$$

 $\theta \in (0, 1) (f(0) = \alpha \text{ and } f(n) = \beta)$

$$\begin{aligned} \Delta_n^{\theta} f(1) &= n^2 (f(2) - 2f(1) + f(0)) + n^2 \left(1 - \frac{1}{n^{\theta}}\right) (f(1) - \alpha) \\ \Delta_n^{\theta} f(n-1) &= n^2 \left(1 - \frac{1}{n^{\theta}}\right) (f(n-1) - \beta) + n^2 (f(N-2) - 2f(n-1) + f(n)) \end{aligned}$$

▲□▶ ▲□▶ ▲ 三 ▶ ▲ 三 り へ ()

Time evolution of the spatial density of particles

$$\pi_t^n(du) = \frac{1}{n} \sum_{x \in I_n} \eta_{tn^2}(x) \,\delta_{\frac{x}{n}}(du)$$

 $\pi_t^n \in \mathcal{M} := \{\mu \text{ positive measure on } [0,1]; \ \mu([0,1]) \le 1\}$

Fix T > 0.

- $\{\pi_t^n; 0 \le t \le T\}$ belongs to $D([0, T], \mathcal{M});$
- { π_t^n ; $0 \le t \le T$ } inherits the Markov property from { η_t ; $0 \le t \le T$ };

Hydrodynamic Limit

The time evolution of the spacial density of particles is given by

$$\pi_t^n(du) = \frac{1}{n} \sum_{x=1}^{n-1} \eta_{tn^2}(x) \,\delta_{\frac{x}{n}}(du).$$

Theorem [Baldasso, Menezes, Neumann, Souza] Let $\gamma : [0, 1] \rightarrow [0, 1]$ be a profile and $\{\mu_n\}_n$ a sequence of initial distributions such that

$$\pi_0^n(du) \implies \gamma(u) \, du.$$

Then, for all $t \ge 0$, we have

 $\pi_t^n(du) \Rightarrow \rho(t,u) du,$

where ρ is the unique weak solution of

$$\partial_t \rho(t, u) = \partial_u^2 \rho(t, u),$$

with initial condition $\rho(0, u) = \gamma(u)$ and the boundary conditions depends on θ .

 ρ is the unique weak solution of

$$\partial_t \rho(t, u) = \partial_u^2 \rho(t, u),$$

with initial condition $\rho(0, u) = \gamma(u)$ and the boundary conditions depends on θ :

- $\bullet \ \theta < 1: \rho(t,0) = \alpha, \, \rho(t,1) = \beta;$
- $\bullet \ \theta = \overline{1: \partial_u \rho(t, 0)} = \overline{\rho(t, 0) \alpha, \partial_u} \rho(t, 1) = \beta \rho(t, 1);$
- $\bullet \ \theta > 1: \partial_u \rho(t, 0) = 0, \ \partial_u \rho(t, 1) = 0.$

