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Interacting Particle Systems



Physical motivation

I Underlying scenario: we look for the
evolution of a physical system, e.g. the
spread of a gas confined to a finite
volume.

I Two scales are considered:
I a macroscopic one.
I a microscopic one.

I Goal: describe the macroscopic
evolution from the microscopic
interaction between particles.

I Due to the huge number of molecules it
is hard to describe precisely the
microscopic state of a system.



History

Ludwig Eduard Boltzmann
(February 20, 1844 – September

5, 1906)

I Development of statistical
mechanics.

I How the properties of atoms
determine the physical
properties of matter (such
as viscosity, thermal
conductivity, and diffusion)?

Frank Spitzer
(July 24, 1926 – February 1, 1992)

I Interaction of Markov processes.
Advances in Mathematics, 1970.

I Each particle performs a random
walk subject to some restriction.

I The random motion of particles is an
interacting particle system.



Scheme



Random Walk



Random walk
Consider a sequence of successive tosses of a fair coin and
let Xn = 1 if the n-th toss is heads and Xn = −1 if the n-th toss is tails.
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Let X0 = 0 and for n ≥ 1,
let Sn = X1 + · · · + Xn be the position of the random walk at time n.
E[Sn] = 0 and Var(Sn) = E[S2

n] = n, for any n.
For any a, b ∈ R with a < b:

lim
n→∞
P(a ≤ Sn√

n
≤ b) =

∫ b

a

1√
2π

e−
x2
2 dx.

Last statement is the De Moivre-Laplace’s Central Limit Theorem.



Poisson Processes



Poisson Process I

Let us count the number of calls that arrive at a call center up to time t or the
number of claims that arrive at an insurance company up to time t. Under certain
hypothesis, each of these experiences can be represented as:
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N(t)

0 t1 t2 t3 t4

1
2
3
4

At the call center: the first call was
received at time t1, the second at time t2
and so on.

At the insurance company: the first claim
was received at time t1, the second at
time t2 and so on.



Poisson Process II

Now let Ak
s,t be the event "in the time interval (s, s + t] the call center receives

exactly k calls".
If we denote the previous result by N(t) (note that it is a function of t), then the
previous event corresponds to N(s + t) − N(s) = k, where N is a function belonging
to the set of functions

X := {N : [0,∞) → {0, 1, 2, · · · } : ∃t1 < t2 < · · ·

N(t) = 0, for all t ∈ [0, t1), N(t) = 1, for all t ∈ [t1, t2), · · · }

Let us now see what are the hypothesis that we have to assume.



Poisson Process III

I Stationary increments: the probability that k calls arrive in (s, s + t] depends
only on t (the length of the interval): P(Ak

s,t ) = P(A
k
0,t ) := Pk(t).

I Independent increments: the number of calls that arrive at disjoint time
intervals are independent: Ak

s,t is independent of Aj
u,v for any choice of k and j

as long as (s, s + t] ∩ (u, u + v] = ∅.
I Calls do not arrive simultaneously: the conditional probability of having two or

more calls during the time interval (0, t] given that arrived one or more class in
the same time interval, tends to 0 as t → 0:

1 − P0(t) − P1(t)
1 − P0(t)

→ 0.

We conclude that Pk(t) =
(λt)k

k! e−λt , where λ = − log(P0(1)).



Exclusion process with slow boundary



The exclusion process with slow boundary
The dynamics
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The exclusion process with slow boundary
The dynamics
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The dynamics - Infinitesimal Generator
Notations: In = {1, . . . , n − 1},

η(x) =
{

1, if site x is occupied,
0, if site x is vacant.

and η = {η(x)} ∈ {0, 1}In is the configuration of particles.{
ηt = {ηt (x)}, t ≥ 0

}
is the exclusion process with slow boundary.

The infinitesimal generator of this process is Ln = Ln,0 + Ln,b, which acts on functions
f : {0, 1}In → R as

(Ln,0 f )(η) =
n−2∑
x=1

[
f (ηx,x+1) − f (η)

]
and

(Ln,b f )(η) =
[
α
nθ (1 − η(1)) + 1−α

nθ η(1)
] [

f (η1) − f (η)
]

+
[
β
nθ (1 − η(n−1)) + 1−β

nθ η(n−1)
] [

f (ηn−1) − f (η)
]
,



The spatial density of particles
Empirical measure

1
n In ⊂ [0, 1]
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πn(η, du) := 1
n

∑
x∈In

η(x) δ x
n
(du)

∫ 1

0
H(u) πn(η, du) = 1

n

∑
x∈In

η(x)H( xn ) →
∫ 1

0
H(u) ρ(u) du

πn(η, du) ⇒ ρ(u) du



Hydrostatic Limit [Baldasso, Menezes, Neumann, Souza]
The stationary profile (density of particles)

Let µssn be the stationary probability measure in {0, 1}In for the SSEP with slow boundary,
which has infinitesimal generator given by n2Ln. Then, for all δ > 0 and continuous function
H : [0, 1] → R,

lim
n→+∞

µssn

[��� 1
n

∑
x∈In

η(x)H( xn ) −
∫ 1

0
H(u)ρ̄(u)du

��� > δ
]
= 0,

where ρ̄ : [0, 1] → [0, 1] is given by

α −

α+
β−α

3
−
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2
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Stationary probability µss
n

I If α = β, then the stationary (and also reversible) measure µssn is the Bernoulli
product measure with parameter α = β ∈ (0, 1),

µssn (η) = ν
n
α(η) =

∏
x∈In

[η(x)α + (1 − η(x))(1 − α)].

In this case we say that the system is in equilibrium.
I If α , β, then the stationary measure µssn is given by

µssn (η) =
1

Zn−1
〈W |

∏
x∈In

[η(x)D + (1 − η(x))E]|V〉,

where Zn−1 is a constant, D and E are square matrix (ansatz matrix) and |V〉
and 〈W | are vectors satisfying:

DE − ED = D + E

〈W |
(
α
nθ E − (1−α)

nθ D
)
= 〈W |( β

nθ D − (1−β)
nθ E

)
|V〉 = |V〉.

*B. Derrida, M. R. Evans, V. Hakin e V. Pasquier, 1993



Outline of the proof of hydrostatic limit

µssn

[
η :

��� 1
n

∑
x∈In

H( xn ) η(x) −
∫ 1

0
H(u) ρ(u) du

��� > δ
]

I Compare ρ̄( xn ) with ρn(x) := Eµss
n
[η(x)] (the stationary empirical profile) in the

following way:
lim
n→∞

(
max
x∈In

��ρn(x) − ρ( xn )��) = 0.

I Compare η(x) with ρn(x) := Eµss
n
[η(x)].

To do this we need to bound the two points correlation function,

ϕn(x, y) := Eµss
n

[ (
η(x) − Eµss

n
[η(x)]

) (
η(y) − Eµss

n
[η(y)]

) ]
,

in the following way

max
0<x<y<n

��ϕn(x, y)�� ≤ C
nθ + n

,

for some positive constant C > 0.



Empirical profile
Fix an initial measure µn in In. For x ∈ In and t > 0, let

ρnt (x) := Eµn [ηt (x)].

We extend the definition to the boundary by setting

ρnt (0) = α and ρnt (n) = β, for all t ≥ 0.

ρnt is a solution of {
∂t ρ

n
t (x) = ∆

θ
nρ

n
t (x), t > 0, x ∈ In,

ρnt (0) = α and ρnt (n) = β, t > 0,

where ∆θn acts on functions f : In ∪ {0, n} → R as
∆θn f (x) = n2( f (x + 1) − f (x)) + n2( f (x − 1) − f (x)), x ∈ {2, . . . , n − 2},
∆θn f (1) = n2( f (2) − f (1)) + n2

nθ ( f (0) − f (1)),
∆θn f (n − 1) = n2

nθ ( f (n) − f (n − 1)) + n2( f (n − 2) − f (n − 1))



Stationary empirical profile
ρn(x) = Eµss

n
[η(x)] is a solution of


0 = ∆θnρn(x) = n2(ρn(x + 1) − f (x)) + n2(ρn(x − 1) − ρn(x)), x ∈ {2, . . . , n − 2},
0 = ∆θnρn(1) = n2(ρn(2) − ρn(1)) + n2

nθ (ρ
n(0) − ρn(1)),

0 = ∆θnρn(n − 1) = n2

nθ (ρ
n(n) − ρn(n − 1)) + n2(ρn(n − 2) − f (n − 1)).

Then
ρn(x) = an x + bn, x ∈ In,

where an =
β−α

2nθ+n−2 and bn = α + an(nθ − 1).

α−
α+

β−α
3
−

β+α
2
−

α+2β−α3−
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θ > 1



The stationary correlation function of the occupation of two
sites x < y

x

y

0 1 2 n − 1

1
2

n − 1
n

ϕn(x, y) is a solution of

Aθnϕ
n(x, y) = a2

n1y=x+1, if (x, y) ∈ Vn, and ϕn(x, y) = 0 if x = 0 ory = n.

Then, is possible to compute that

ϕn(x, y) = −a2
n · T

θ
u ,

where Tθu := E
[∫ ∞

0 1Xθ
u (s)∈Dn

ds
]

and u = (x, y) ∈ Vn.



If θ = 0 and u = (x, y), we have T0
u =

x(n−y)
n−1 .

We will compare T0
u and Tθu using a coupling.

Tθu ≤ E[D
(1) + · · · + D(Y)]

=
∑
j≥1
E[(D(1) + · · · + D(j))1Y=j−1]

=
∑
j≥1
P(Y = j − 1)

j∑
i=1

T0
ui

≤
∑
j≥1
P(Y = j − 1)C(n + j − 1)

≤ C(n + nθ).

|ϕn(x, y)| ≤ C(n + nθ)a2
n.



Empirical profile
θ = 0 {

∂t ρ
n
t (x) = ∆nρ

n
t (x), t > 0, x ∈ In,

ρnt (0) = α and ρnt (n) = β, t > 0,

where ∆n acts on functions f : In ∪ {0, n} → R as

∆n f (x) = ∆0
n f (x) = n2( f (x + 1) − f (x)) + n2( f (x − 1) − f (x)), x ∈ In

θ = 1 ( f (0) = α and f (n) = β)

∆
1
n f (1) = n2( f (2) − f (1)) +

n2

n1 ( f (0) − f (1))

= n
(
∇+n f (1) + (α − f (1))

)
∆

1
n f (n − 1) =

n2

n1 ( f (n) − f (n − 1)) + n2( f (N − 2) − f (n − 1))

= n
(
(β − f (n − 1)) − ∇−n f (n − 1)

)



Hydrodynamic equation

θ < 1 :

∂t ρ(t, u) = ∆ρ(t, u), t > 0, u ∈ (0, 1),
ρ(t, 0+) = α, t > 0,
ρ(t, 1−) = β, t > 0.

Dirichlet boundary conditions

θ = 1 :


∂t ρ(t, u) = ∆ρ(t, u), t > 0, u ∈ (0, 1),
∂uρ(t, 0+) = ρ(t, 0+) − α, t > 0
∂uρ(t, 1−) = β − ρ(t, 1−), t > 0.

Robin boundary conditions

θ > 1 :


∂t ρ(t, u) = ∆ρ(t, u), t > 0, u ∈ (0, 1)
∂uρ(t, 0+) = 0, t > 0,
∂uρ(t, 1−) = 0, t > 0.

Neumann boundary conditions



Empirical profile

θ > 1 {
∆θn f (1) = n∇+n f (1) − n

nθ ∇
+
n f (0)

∆θn f (n − 1) = n
nθ ∇

+
n f (n − 1) − n∇−n f (n − 1)

θ ∈ (0, 1) ( f (0) = α and f (n) = β)
∆θn f (1) = n2( f (2) − 2 f (1) + f (0)) + n2

(
1 − 1

nθ

)
( f (1) − α)

∆θn f (n − 1) = n2
(
1 − 1

nθ

)
( f (n − 1) − β) + n2( f (N − 2) − 2 f (n − 1) + f (n))



Time evolution of the spatial density of particles
Empirical measure
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πnt (du) = 1
n

∑
x∈In

ηtn2 (x) δ x
n
(du)

πnt ∈ M := {µ positive measure on [0, 1]; µ([0, 1]) ≤ 1}

Fix T > 0.
I {πnt ; 0 ≤ t ≤ T} belongs to D([0,T],M);
I {πnt ; 0 ≤ t ≤ T} inherits the Markov property from {ηt ; 0 ≤ t ≤ T};



Hydrodynamic Limit
The time evolution of the spacial density of particles is given by

πnt (du) = 1
n

n−1∑
x=1

ηtn2(x) δ x
n
(du).

Theorem [Baldasso, Menezes, Neumann, Souza]
Let γ : [0, 1] → [0, 1] be a profile and {µn}n a sequence of initial distributions such
that

πn0 (du) ⇒ γ(u) du.

Then, for all t ≥ 0, we have

πnt (du) ⇒ ρ(t, u) du,

where ρ is the unique weak solution of

∂t ρ(t, u) = ∂2
uρ(t, u),

with initial condition ρ(0, u) = γ(u) and the boundary conditions depends on θ.



ρ is the unique weak solution of

∂t ρ(t, u) = ∂2
uρ(t, u),

with initial condition ρ(0, u) = γ(u) and the boundary conditions depends on θ:
I θ < 1: ρ(t, 0) = α, ρ(t, 1) = β;
I θ = 1: ∂uρ(t, 0) = ρ(t, 0) − α, ∂uρ(t, 1) = β − ρ(t, 1);
I θ > 1: ∂uρ(t, 0) = 0, ∂uρ(t, 1) = 0.



Thank you!
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