Sincronismo de fase em osciladores caóticos para transmissão de informação

Fernando Henrique dos Santos^{*}, Marcio Eisencraft^{**}

*Universidade Federal do ABC, Santo André, Brasil **Escola Politécnica da Universidade de São Paulo, São Paulo, Brasil

e-mail: fernando.h@ufabc.edu.br

Abstract - The objective of this work is to discuss the possibility of using phase synchronization between two coupled Rössler oscillators, in a master-slave configuration, to transmit binary sequencies. This goal is the first step of a work in progress that intend to verify if phase synchronization is more robust to noise in channel than complete synchronization.

Palavras-chave: Chaos, Phase Synchonization, couple oscillators.

Introdução

O fenômeno de sincronismo ocorre quando objetos que oscilam com alguma interação entre si convergem para uma mesma frequência [1]. Na natureza a sincronização é um fenômeno recorrente e se apresenta em vários sistemas distintos, com um número variado de elementos [2]. Como exemplo, os neurônios sincronizam seus potenciais de ação em processos cognitivos [3], vagalumes sincronizam suas frequências para chamar a atenção das fêmeas [4] e até os aplausos das pessoas em uma sala tendem à sincronização [5].

Sinais caóticos apresentam dependência sensível às condições iniciais. Assim, em princípio, parecem desafiar a possibilidade de sincronização.

Em 1990, Pecorra e Carroll mostraram quais os critérios necessários para sincronizar sistemas caóticos acoplados numa configuração mestre-escravo [6]. A partir daí, surgiram as primeiras ideias para sistemas de comunicação que utilizam sincronismo completo de sinais caóticos [7]. O problema é que o sincronismo caótico é pouco robusto quando há ruído aditivo entre o transmissor e o receptor [8,9].

O objetivo deste trabalho é mostrar a possibilidade de utilizar o sincronismo de fase entre dois osciladores acoplados como mestre-escravo para transmitir sequências binárias. Esse objetivo é o primeiro passo do trabalho, já em andamento, que pretende verificar se o sincronismo de fase é mais robusto ao ruído no canal que o sincronismo completo.

Materiais e métodos

Nessa seção discutem-se os conceitos de fase e de sincronismo.

Definição de fase de um sinal

Para um oscilador periódico, a fase é uma variável que parametriza o movimento ao longo do ciclo limite crescendo proporcionalmente com o tempo [1].

A fase de um oscilador caótico com rotação aproximadamente uniforme em torno de um ponto, mesmo tendo uma amplitude variável, pode ser comparada à fase de um oscilador linear [1].

Nesse artigo utiliza-se a transformada de Hilbert de x(t)

$$x_H(t) = \frac{1}{\pi} P.V. \int_{-\infty}^{\infty} \frac{x_i(t)}{t - \tau} d\tau$$
(1)

para compor um sinal complexo $\zeta(t)$, correspondente ao sinal x(t), e escrevê-lo como

$$\zeta(t) = x(t) + ix_H(t) = A(t)e^{i\phi(t)}.$$
 (2)

Dessa forma, (2) define a fase instantânea $\phi(t)$ de um sinal x(t). A sigla P.V significa que a integral é tomada no sentido inverso do valor principal de Cauchy [1].

Por exemplo, aplicando-se (1) e (2) ao sinal

$$x(t) = \cos(2\pi t) \tag{3}$$

obtém-se, como esperado $\phi(t) = 2\pi t$, como mostrado na Figura 1.

Nesse trabalho considera-se a variável x(t) do sistema de Rössler [10]

$$\begin{cases} \dot{x}(t) = -(y(t) - z(t)) \\ \dot{y}(t) = x(t) + ay(t) \\ \dot{z}(t) = b + z(t)(x(t) - c) \end{cases}$$
(4)

em que a = 0.16, b = 0.4 e c = 8.5 [11].

Na Figura 2 é mostrada a projeção no plano x-y do atrator desse sistema. Nesse plano, as órbitas rotacionam em torno da origem.

Por exemplo, na Figura 3 mostra-se um trecho de órbita e sua respectiva fase. Nota-se que a cada ciclo a fase sofre um acréscimo de 2π .

Figura 1 – a) Evolução de (3) no tempo, b) Evolução de $\phi(t)$ no tempo.

Figura 2 – Atrator do sistema (4) rotacionando em torno da origem.

Sincronismo

Existem várias definições possíveis para o sincronismo entre sistemas dinâmicos.

O sincronismo completo ocorre quando dois sistemas são acoplados de forma que suas trajetórias $\mathbf{x}_1(t) \in \mathbf{x}_2(t)$ satisfazem

$$\lim_{t \to \infty} \|\mathbf{x}_1(t) - \mathbf{x}_2(t)\| = 0.$$
 (5)

O sincronismo de fase ocorre sempre que a diferença entre as fases $\phi_1(t) \in \phi_2(t)$ segue a relação

$$|\Delta\phi_{n,m}(t)| = n\phi_1(t) - m\phi_2(t) \le k \qquad (6)$$

com $n \in m \in \mathbb{N} \in k$ é uma constante [2]. Isso implica que neste tipo de sincronismo as amplitudes permanecem diferentes mas as fases se mantêm correlacionadas [11].

Pode-se acoplar em configuração mestre-escravo dois sistemas de Rössler de forma a se obter o sincronismo de fase.

Figura 3 – a) Evolução de (4) no tempo, b) Evolução de $\phi(t)$ no tempo.

As equações que descrevem o sistema mestre são

$$\begin{cases} \dot{x}_1(t) = -(y_1(t) - z_1(t)) \\ \dot{y}_1(t) = x_1(t) + a_1 y_1(t) \\ \dot{z}_1(t) = b_1 + z_1(t)(x_1(t) - c_1) \end{cases}$$
(7)

Já o sistema escravo é dado por

$$\begin{cases} \dot{x}_2(t) = -(y_2(t) - z_2(t)) + \eta(x_1(t) - x_2(t)) \\ \dot{y}_2(t) = x_2(t) + a_2 y_2(t) \\ \dot{z}_2(t) = b_2 + z_2(t)(x_2(t) - c_2) \end{cases}$$
(8)

Tomando-se $a_1 = a_2 = 0,22$, $b_1 = b_2 = 0,4$ e $c_1 = c_2 = 8,5$ e $\eta = 0,3$, sendo η a intensidade de acoplamento entre os sistemas [11], ocorre o sincronismo de fase como mostrado na Figura 4 (a). Já tomando $a_1 = 0,29$, os sistemas mestre e escravo não se sincronizam, como na Figura 4 (b).

Figura 4 – a) Mestre-Escravo com sincronismo $a_1 = a_2$, b) Mestre-Escravo sem sincronismo $a_1 = 0,29$.

Resultados - Transmissão de infor-

Utilizando a mudança de comportamento apresentada, foi simulado um sistema de comunicação que utiliza o sincronismo de fase entre os subsistemas, $x_1(t) e x_2(t)$, para enviar sequências de bits. Nesse sistema, quando se deseja transmitir um "0" utiliza-se o valor de $a_1 = a_2$ e com isso se obtém o sincronismo de fase entre os subsistemas, e para se transmitir o bit "1", utiliza-se o valor de $a_1 = 0.29$.

O bit transmitido é gerado a cada 6000 pontos, e os 2000 primeiros pontos são considerados transiente. Consideram-se condições iniciais aleatórias dentro da bacia de atração do atrator caótico e passo de integração 0,01. A figura 5 mostra um sinal que representa a sequência $I = [0 \ 1 \ 0 \ 1]$.

Figura 5 – a) Exemplos de sinais $x_1(t) e x_2(t)$ para a sequência de bits [0 1 0 1] b) Fases $\phi_1(t) e \phi_2(t)$ das equações (7) e (8), respectivamente c) Gráfico de $\Delta \phi_{1,2}$.

Para recuperar as sequências de bits foram realizados os cálculo das fases $\phi_1(t) \in \phi_2(t)$ utilizando a transformada de Hilbert (1) e (2). As fases são apresentadas na Figura 5 (b) e diferença $|\Delta\phi_{1,1}(t)|$ entre elas é apresentada em 5 (c).

Quando o sincronismo de fase ocorre, a diferença $|\Delta\phi_{1,1}(t)|$ apresenta pequenos saltos e pequenas oscilações, mas continua sempre centrada em torno de uma reta paralela ao eixo das abscissas, como se vê na Figura 5 (c). Nos trechos que não há sincronismo, além da diferença entre as fases oscilar mais que nas regiões sincronizadas, ela também apresenta saltos no valor de 2π , como nos trechos [0.6 - 1.2] e [1.8 - 2.4] da Figura 5 (c).

Para quantificar os valores dos picos apresentados calculou-se o diferencial de $|\Delta \phi_{1,1}(t)|$ através

$$\theta(n) = \Delta \phi_1(n) - \Delta \phi_1(n-1) \tag{9}$$

Os valores de $\theta(n)$ são apresentados na Figura 6, onde é possível observar que os diferencias nas regiões de sincronismo são menores, em módulo, que nas regiões dessincronizadas. Por isso, quando se faz a soma μ dos 4000 pontos que são considerados na transmissão de informação

$$\mu = \sum |\theta| \tag{10}$$

os módulos de $\theta(n)$ são diferentes quando o valor é "0" ou "1", conforme a figura 6.

Figura 6 – Diferencial de $\Delta \phi_{1,2}$.

Normalizando os valores obtidos através da equação (10) é possível observar duas regiões de aglomeração na distribuição de μ , Figura 7.

Figura 7 – Distribuição de μ .

A primeira aglomeração fica no intervalo [0.0 - 10.0] e a segunda no intervalo [20.0 - 60.0]. Dessa forma foi possível recuperar o bit transmitido analisando em qual dos intervalos o valor μ se encontra.

Para separar as duas regiões foi utilizado como limiar, L, o valor médio entre o limite superior do primeiro intervalo e limite inferior do segundo intervalo. Quando o limiar $L \leq 15$, o bit é "0", e caso contrário é "1" sendo assim possível transmitir a sequência de bits desejada. Uma sequência binária com 10⁴ bits aleatórios foi enviada e todos os bits foram recuperados sem erro.

Discussão e Conclusões

Esse trabalho tem como objetivo mostrar a possibilidade de utilizar o sincronismo de fase entre dois osciladores para transmitir sequências binárias, esse objetivo foi alcançado e uma sequência com 10^4 bits foi transmitida pelo mestre e recuperada pelo escravo.

Os próximos passos desse trabalho são: estudar como o ruído afeta o sincronismo de fase e trabalhar em um modelo de sincronismo de neurônios biológicos.

Agradecimentos

F.H.S agradece a CAPES e M.E. agradece ao CNPq (processos 479901/2013-9 e 309275/2016-4) pelo suporte financeiro.

Referências

- A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge Nonlinear Science Series, Cambridge University Press, 2003.
- [2] S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, and C. Zhou, "The synchronization of chaotic systems," *Physics Reports*, vol. 366, pp. 1–101, aug 2002.
- [3] G. Buzsáki and A. Draguhn, "Neuronal oscillations in cortical networks," *science*, vol. 304, no. 5679, pp. 1926–1929, 2004.
- [4] J. Buck, "Synchronous rhythmic flashing of fireflies. ii.," *The Quarterly Review of Biology*, vol. 63, no. 3, pp. 265–289, 1988. PMID: 3059390.
- [5] Z. Néda, E. Ravasz, Y. Brechet, T. Vicsek, and A. Barabási, "Self-organizing processes: The Sound of many Hands Clapping," *Nature*, vol. 403, no. 6772, pp. 849–850, 2000.
- [6] L. M. Pecora and T. L. Carroll, "Synchronization in chaotic systems," *Physical Review Letters*, vol. 64, pp. 821–824, feb 1990.
- [7] M. Eisencraft, "Sistemas de comunicação utilizando sinais caóticos," Master's thesis, Escola Politécnica da Universidade de São Paulo, 2001.

- [8] C. Williams, "Chaotic communications over radio channels," *IEEE Transactions on Cir*cuits and Systems I: Fundamental Theory and Applications, vol. 48, pp. 1394–1404, dec 2001.
- [9] M. Eisencraft, R. D. Fanganiello, and L. H. A. Monteiro, "Chaotic synchronization in discrete-time systems connected by bandlimited channels," *IEEE Communications Letters*, vol. 15, pp. 671–673, jun 2011.
- [10] O. Rössler, "An equation for continuous chaos," *Physics Letters A*, vol. 57, no. 5, pp. 397 – 398, 1976.
- [11] R. Follmann, "Sincronização de fase em sistemas caóticos e sua aplicabilidade ao reconhecimento de padrões," 2011.