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Abstract - Hepatic Steatosis is the presence of fat
in liver tissue, a pathology found in more than 30%
of the US population. Magnetic resonance imaging
is a reliable and reproducible exam for the assess-
ment of liver fat fraction. This work analyzed the
behavior of the standard fitting algorithm used in
literature to estimate liver fat fraction with magni-
tude in-phase and opposed-phase images by varying
a set of initial fitting parameters. The results led
to a suggestion for optimal values.
Keywords: Fitting parameters, fat fraction,
Levenberg-Marquadt, MRI

Introduction

Hepatic Steatosis is the presence of fat in liver tis-
sue, a pathological condition found in more than
30% of US population [1] which is increasingly be-
ing diagnosed using magnetic resonance imaging
(MRI) due to its reproducibility [2] and concor-
dance to histologic data [3]. The amount of fat rel-
ative to that of water, namely fat fraction (FF), is
estimated using gradient-recalled echo (GRE) im-
ages. These images are acquired at two echo times
(TE) at which the signals from fat and water pro-
tons are presumed to be summed, forming in-phase
(IP) images, or subtracted, in the opposed-phase
(OP) images [4]. Current estimation methods are
performed using nonlinear least squares to fit the
signal from the image to a reduced version of the
GRE equation and obtain FF.

It is known that the initialization parameters
in a nonlinear fitting interfere directly on data es-
timation and convergence, and the most common
algorithm used to search for the parameters is Lev-
enberg–Marquardt. This work verified the error
in FF estimation when varying initial parameters,
searching for a set of general initialization values
that would safely lead to convergence.

Materials e Methods

Fat fraction is currently estimated by using vari-
ations of equation that describes the GRE signal

and fitting the image data to them. The equation
is generally simplified for low flip angles [5], for
n moieties precessing at different frequencies and
results in the signal at a given TE:

S(TE) = |kα
∑
n

ρn exp(
−TE
T2∗

) exp(2πfnTE)|

(1)
where k is a machine-specific proportionality con-
stant, α is the flip angle, and fn is the precession
frequency of the moiety. Fat fraction is defined as
the relation between proton density of fat (ρfat)
and the proton density of the total volume ob-
served (ρtotal), which is considered to be made up
of fat and water (ρwater):

FF =
ρfat
ρtotal

(2)

where ρtotal = ρwater + ρfat. Signals from voxels
from the IP/OP images are fitted by equation (1)
in order to obtain ρwater, ρfat and subsequently
FF.

The proposed work was implemented in Python
3 using Jupyter Notebook and Scipy packages.
The GRE signal was simulated based on equa-
tion (1) for 7 TEs, considering a magnetic field
of 3T, 6 fat components and 1 water component
as suggested by Hamilton et al. [6]. Several simu-
lations of the GRE signal were performed for dif-
ferent values of FF and results were fitted back to
the equation using a range of initialization parame-
ters (ρwater and ρfat). GRE signals were simulated
for fat fractions ranging from 1 to 50% and their
equivalent proton densities according to equation
(2), considering ρtotal as 10, 100 and 1000. In the
fitting stage, for each FF value, the initialization
value for either ρwater or ρfat was fixed as match-
ing to the corresponding value used to generate
the signal, while the other parameter in its turn
swept a range between 0 and 2 ∗ ρtotal of the sim-
ulated sample. All tests were repeated adding Ri-
cian noise to the generated signal, with SNR values
of 5, 10 and 20.



Results

Figures 1-4 were generated considering ρtotal =
1000 even though the tests were repeated and con-
sistent for other values (data not shown). The ab-
scissas show the differences between the fixed and
the variable proton density, either ρfat or ρwater.
The ordinates show the differences between the
estimated and the simulated (true) fat fraction,
or error in estimation. Each simulation was re-
peated for ten different fat fractions and plotted
altogether.

Figure 1A displays the results for the simulation
without noise when the initial values passed to the
fitting algorithm were matching the simulated ones
for ρwater while ρfat varies across the whole range.
For small values, the algorithm converges to a lo-
cal minimum, and this region of change in conver-
gence can be better seen in Figure 1B. The same
test is repeated for changes in ρwater while passing
correct initial values for ρfat in Figure 2, which
now depicts a noticeable change in the acceptable
difference between the initialization of the proton
densities for each fat fraction. Figures 1C and 2C
explore the effects of added noise for both vari-
ables in the change of results due to the increasing
difference between ρfat and ρwater. Finally, figures
3 and 4 show the effects in the baseline results for
different values of SNR.

Discussion

When varying initialization values for ρfat while
keeping ρwater fixed matching the correct value,
the algorithm admitted deviations in ρfat, esti-
mating correct FF values as can be seen in Fig-
ure 1. When the difference ρwater − ρfat becomes
larger than -17.6 for 39% FF and respective val-
ues for other fat fractions as shown in Figure 1B,
the algorithm converges to a local minimum. Fig-
ure 1 also shows that for larger values of fat frac-
tions, the algorithm tends to allow a smaller dif-
ference between the water and fat proton den-
sity. When initialized values for ρwater are varied
while keeping ρfat fixed as matching the correct
value, the algorithm converged to a local minimum
right after ρwater became smaller than ρfat (i.e.,
ρvaried − ρwater < 0) as can be observed in Fig-
ure 2A. This result indicates that for these cases
the algorithm is much more instable if the initial
estimation of ρfat is greater than ρwater. The re-
sults are different due to how these variables affect
Equation (1).

Adding noise to the signal, the local minimum
behavior did not change for either case of initial-
ization values, as can be seen in Figures 3 and 4.
Figure 3 shows the results while changing ρfat and
Figure 4 for changes in ρwater for different SNRs,
stressing that the fitting converges to the same lo-
cal minima and maxima, slightly altered by the
presence of noise. Even though for each iteration it
was used a different random noise, the convergence
leads to the same results. A general recommen-
dation with the purpose of minimizing errors due
to initialization can be derived from these results.
Presuming that water molecules predominate in
human liver and that the signal in a IP image is
proportional to the sum of the signals from fat and
water proton densities, we suggest the fitting ini-
tialization parameters to be ρwater = S(IP )/2 and
ρfat < S(IP )/2, where S(IP ) is the signal inten-
sity of a voxel or region of interest located on the
first IP image. This should guarantee convergence
as the values are necessarily smaller than the real
ones due to the signal decay and the relation be-
tween ρwater and ρfat represents what it should
be found in a real system evaluated by magnitude
images.

Conclusion

In this paper we analyzed the Leven-
berg–Marquard fitting algorithm in terms of
its response according to the input initial values
ρwater and ρfat for the calculation of fat fraction
according to the general gradient echo equation
for small flip angles. The fitting method showed
good response when varying the initial values of
fitting, even when noise was inserted on GRE
signal, as long as ρwater ≥ ρfat. The results led
to a general recommendation for the initialization
of the fitting algorithm when considering those
variables in such a way that each should take the
half of the value of the signal intensity of the voxel
or region of interest in the first in-phase image.
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Figure 1 – Variation in ρfat while ρwater is fixed for different values of FF. 1A has no noise on the
signal, 1B is the zoomed area from 1A, 1C has an SNR = 20.
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Figure 2 – Variation in ρwater while ρfat is fixed for different values of FF. 2A has no noise on signal,
2B has an SNR = 20.
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Figure 3 – Noise Variation when ρfat is varied while ρwater is fixed for different values of FF. 3A has
an SNR = 5, 3B has an SNR = 10, 3C has an SNR = 20
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Figure 4 – Noise variation when ρwater is varied while ρfat is fixed for different FF. 4A has an SNR =
5, 4B has an SNR = 10, 4C has an SNR = 20.
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