A framework for programming a modern magnetic resonance
system
D.C. Pizetta, L.C.R. Silva, E.L.G. Vidoto, M. Martins, A. Tannus

Sé&o Carlos Institute of Physics, University of Sdo Paulo, S&o Carlos, Brazil
e-mail: daniel.pizetta@usp.br

Introduction: Magnetic resonance system leads the tools of analysis and diagnosis because its non-invasive
and non-destructive characteristics over the study object. Recent advances in the magnetic resonance field
introduced such technology in more accessible and portable design which requires flexibility for being used to
new applications that researchers could create by their own. This flexibility and liberty is not found in
commercial system. The aim of this project is the definition of a framework that assists the equipment
programming and management, including since the creation of the interface to data processing.

Methods: The entire framework is supported by up-to-date programming techniques that generates an API
that can be integrated with others external tools such as simulators and scientific libraries. The main language
is Python because of its simplicity and availability of many scientific libraries such as NumPy, SciPy, etc.
Results: Within this framework, the PyMR [1] framework offers a generalized application programming
interface (API) for programming and setting magnetic resonance systems, while another derived API
constitutes the backend, which communicates in a lower level with the hardware. Preliminary versions are
already in use in local magnetic resonance system at University of Sdo Paulo, S&o Carlos Institute of Physics,
Center of Magnetic Resonance Imaging and Spectroscopy. Figure 1 shows the interface of object manager
which has the object creator, object inspector and object editor. The first one shows all the classes that can be
instantiate. The second one shows the system structure and the last one shows the properties that can be
changed for each part of the system. Plugins were also produced to help users to manage to create, in any level,
new applications or systems. These plugins should be integrated with the Eclipse Integrated Development
Environment (IDE) or other ones. The whole framework and plugins have an integrated documentation which
could be exported in HTML or PDF formats.

Object Manager

Object Creator ® Object Inspector ® Object Editor
View Object e
Class Hierarchy ® o 7 @
Filter Filt
ilter Parameter Value
Class Documentation *| Obiject ~ | Class Label PyMRObject
= pymr.core.device = mrs_hahn System MRS Hahn Spect description
AnalogDigtelConverter Analog-to-digital < © transmitter_set % TransmitterSet T Set enabled @
CascadelntegratorCombFilter Cascade integrator- i o ~ Tromemit Tt label TOMCO BT00500
2 Devi Closs that imo x ¥ Transmitter * model BT00500-Gamma
evice lass that implemer tx1_proc_pm Processor PM Processor name amp_rf_tomco_1
xLproc_fm Processor FM Processor serialNumber 376403
113 DeviceSet Class that implemes tx1_proc_am Processor AM Processor vendor ToMco
DigitalAnalogConverter Digital-to-analog tlnco_secondary NumericallyControlledOscilator NCO Secondary Peripheral
c | | x1_nco_primary NumericallyControlledOscillator NCO Primary
mphasisFilter Emphasis filter clas: ! P
tcl_dac DigitalAnalogConverter DAC P
Filter Filter class. 5 RFAmplifi
FinitelmpulseResponseFilter Finite impulse resp = rf_coil_set_tr_25_pm &%) RFCoilset TR25PM mplifier
InfinitelmpulseResponseFilter Infinite impulse res fcoil_tr_25_pm @ RFCoil amplificationBandwidth Broadband
NumericallyControlledOscillator ~ Numerically Control = amp_rf_set_tomco) RFAmplifierSet TOMCO BT00500 SET amplificationClass A
! amplificationDevice Tube e
Transducer Base class for trans amp_rf_tomco_d Ty RFAmplifier TOMCO BT00500 & Tutorial
-rf-tomeo- D amplificationOperation ContinuousWave
]_—*® Gradient Class that represen amp_rf_tomco_3 1 RFAmplifier TOMCO BT00500 drop 0 Creatinga Sinc Pukse-
amp_rf_tomco_2 1 RFAmplifier TOMCO BT00500 fallTime 0
1) Gradientset Class that represen - amp_rf_tomco_1 RFAmplifier TOMCO BT00500 frequency 23 MHz
PhaseGradient Class that impleme: = receiver_set 1) ReceiverSet Rx Set frequ EQuantity(5, me‘lal’(‘:;‘; 2ncQuantity)
ReadGradient Class that implemer . T Receiver Rx 1 gain _
SelectionGradient Class that impleme: © gainRange [[<Quantity (10, ‘decibyte)>. <Quantic
rx1_fir_secondary FinitelmpulseResponseFilter FIR Secondary teDelm Tus
_PreEmphasis Class that implemes g ¥
rx1_fir_primary FinitelmpulseResponseFilter FIR Primary gateLogic Low
I Receiver Class that implemer rxl_cic CascadelntegratorCombFilter CIC gateType Blank
rx1_ade AnalogDigitalConverter ADC inputimpedance 00
I@ ReceiverSet Class that implemes pre_rf_miteq Tt RFPreamplifier Miteq AU-1448 inputPowerRange ([<Quantity (L, ‘millwatt)>, <Quantt
R magnet_per_05t @ PermanentMagnet Magnet 0.5T NdFeB input [<Quantity(-10, 'volt)>, <Qu

Figure 1. Some characteristics of PyMR framework. a) Object manager formed by object creator, object
manager, object editor. b) Integrated documentation generated in HTML.

Conclusion: The set of frameworks and plug-ins is extremely versatile and flexible, reflecting the high power
of modern technologies or new applications for existing ones.

Referéncias: [1] PIZETTA, D. C. Biblioteca, APl e IDE para o desenvolvimento de projetos de metodologias
de Ressonancia Magnética. 2014. Dissertacdo (Mestrado em Fisica Aplicada) - Instituto de Fisica de S&o
Carlos, Universidade de Sédo Paulo, Sédo Carlos, 2014, Disponivel em:
<http://www.teses.usp.br/teses/disponiveis/76/76132/tde-28042014-160738/>

