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Introduction: Magnetic resonance system leads the tools of analysis and diagnosis because its non-invasive
and non-destructive characteristics over the study object. Recent advances in the magnetic resonance field
introduced such technology in more accessible and portable design which requires flexibility for being used to
new applications that researchers could create by their own. This flexibility and liberty is not found in
commercial system. The aim of this project is the definition of a framework that assists the equipment
programming and management, including since the creation of the interface to data processing.

Methods: The entire framework is supported by up-to-date programming techniques that generates an API
that can be integrated with others external tools such as simulators and scientific libraries. The main language
is Python because of its simplicity and availability of many scientific libraries such as NumPy, SciPy, etc.
Results: Within this framework, the PyMR [1] framework offers a generalized application programming
interface (API) for programming and setting magnetic resonance systems, while another derived API
constitutes the backend, which communicates in a lower level with the hardware. Preliminary versions are
already in use in local magnetic resonance system at University of Sdo Paulo, S&o Carlos Institute of Physics,
Center of Magnetic Resonance Imaging and Spectroscopy. Figure 1 shows the interface of object manager
which has the object creator, object inspector and object editor. The first one shows all the classes that can be
instantiate. The second one shows the system structure and the last one shows the properties that can be
changed for each part of the system. Plugins were also produced to help users to manage to create, in any level,
new applications or systems. These plugins should be integrated with the Eclipse Integrated Development
Environment (IDE) or other ones. The whole framework and plugins have an integrated documentation which
could be exported in HTML or PDF formats.
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Figure 1. Some characteristics of PyMR framework. a) Object manager formed by object creator, object
manager, object editor. b) Integrated documentation generated in HTML.

Conclusion: The set of frameworks and plug-ins is extremely versatile and flexible, reflecting the high power
of modern technologies or new applications for existing ones.
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