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Abstract – This work presents a classification performance 

comparison between different frameworks for functional 

connectivity evaluation aiming to distinguish motor imagery 

classes in the context of electroencephalography (EEG)-

based brain-computer interfaces for nine subjects (BCI 

competition IV – dataset 2a). Two different theoretical 

scenarios for functional connectivity were studied: 1) 

classical Pearson correlation for estimating the adjacency 

matrix; 2) the spatial recurrence between each pair of 

electrodes at each time instant followed by recurrence 

frequency analysis for similarity inference. These strategies 

were followed by graph feature evaluation (cluster 

coefficient, degree, betweenness centrality and eigenvalue 

centrality), feature selection by Davies-Bouldin index and 

classification using least squares classifier. The obtained 

results revealed that the recurrence-based approach for 

functional connectivity evaluation was significantly better 

than the Pearson’s framework, with the eigenvalue 

centrality being the best graph measure for distinguishing 

the 4-motor imagery classes, attaining 70% accuracy for the 

best subjects. When just the best pairs of classes were 

considered, accuracies higher than 90% were achieved for 

four subjects with the recurrence-based framework. 

 

Keywords: Brain-Computer Interface, 

Functional Connectivity, Complex Networks, 

Motor Imagery, Pattern Recognition. 

Introduction 

A Brain-Computer interface (BCI) is a system 

that aims to extract information from central 

nervous system activity and translate it into 

output commands. BCIs have as main focus the 

development of solutions to restore 

communication and efficient control of assistive 

devices for people with disabling neuromuscular 

disorders, such as stroke, cerebral palsy, 

amyotrophic lateral sclerosis and spinal cord 

injury [1]. They have also been used for 

rehabilitation purposes [2]. 

Besides that, BCIs can also be employed to 

offer a better understanding of brain functioning 

and the cognition process itself, when 

mechanisms and variables are sought and 

investigated aiming at an efficient discrimination 

of mental tasks and their mapping in well-

defined labels [1]. 

Among the techniques to study brain 

functioning, the functional connectivity [3, 4] 

seeks to characterize the observational similarity 

between different brain regions and how such 

similarity changes due to patient’s pathology or 

even under different mental tasks. To accomplish 

that, the functional connectivity has been 

evaluated from time series obtained in different 

experimental frameworks: its most common 

application based on fMRI recordings and, more 

recently, on signals with a better temporal 

resolution, such as EEG, MEG, etc [3, 4]. In 

those cases, similarity is usually estimated based 

on classical statistical tools such as linear 

correlation (Pearson), covariance, spectral 

coherence, or phase locking between pairs of 

time series [4], which have been used in studies 

concerning schizophrenia [5], epilepsy [6] and 

depression [7]. 

Having these issues in mind, this work 

proposes to study the classification accuracy of 

functional connectivity measures obtained using 

classical Pearson correlation and also a 

recurrence-based quantification strategy with 

further characterization using classical graph 

metrics in the context of EEG-BCI motor 

imagery signals.  

Methods 

Database: A motor imagery (MI) database 

containing training and testing datasets of four 

tasks – left hand, right hand, feet and tongue – 

for nine subjects was analyzed  (BCI 

Competition IV - dataset 2a). The trials (12 for 

each task per dataset) lasted around 8 seconds, 

with only 3 being related to MI tasks. More 

details in [8]. 

Preprocessing: The signals were bandpass 

filtered between 8 and 15 Hz and a common 



average reference spatial filtering was used [1]. 

After this, only the signals parts related to the MI 

tasks were taken into account in this analysis 

(second 3 to 6).  

Functional connectivity quantification: 

functional connectivity evaluation leads to an 

adjacency matrix, which represents the similarity 

between all pairs of electrodes. Here, the 

adjacency matrix of all 22 electrodes available 

was obtained considering two different 

approaches: Pearson Correlation and the Space-

Time Recurrence counting.  

Pearson Correlation is a time-domain 

similarity measure which can detect linear 

dependency between two electrodes [9] as 

defined in Eq. 1, in which cov(i,j) is the 

covariance between electrodes i e j, and var(.) is 

the variance. 
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In order to define binary connectivity 

matrices, graph edges were determined by a 

correlation threshold (ρ). 

Space-Time Recurrence (STR) counting 

consists on the evaluation of a recurrence plot 

[10] in the electrode space for each time instant 

and their further density analysis. This implies in 

evaluating which electrodes are close or not to a 

distance ε and building a three-dimensional 

TMM  data recurrence structure, being M 

being the number of electrodes and T the number 

of time instants. The Space-Time Recurrence 

(STR) matrix between electrodes i and j for n 

samples can be defined as: 
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with Θ{x} denoting the Heaviside function and ε 

an arbitrary distance chosen to indicate 

proximity. The edges between nodes i and j in 

the adjacency matrix (A) can be set by means of 

Eq. 3, in which ψ is a counting threshold: 
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This threshold (ψ) can be obtained from the 

minimum density of recurrence plus a percentage 

(φ) of the distance between the minimum and 

maximum densities to define the adjacency 

matrix used in the subsequent steps: 
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The distance threshold (ε) and percentage (φ) 

for were defined after an exhaustive search, as in 

the case of the correlation threshold (ρ), aiming 

to compare the best classification performances 

of these techniques. It is also important to 

highlight that the use of a recurrence plot to 

estimate the adjacency matrix has already been 

reported in [11] and [12], but out of the context 

of space recurrence plots between different 

sensors or even functional connectivity. 

 

Graph theory metrics: To evaluate the 

functional connectivity matrix obtained by both 

approaches, four graph metrics were chosen: 

degree, clustering coefficient, betweenness 

centrality and eigenvector centrality.  

The node degree (Eq. 5) is a measure that 

quantifies the number of links, or neighbors, of a 

given node, which allows identifying the network 

hubs [13]:     
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in which n is the number of nodes and Aij is the 

adjacency matrix value between nodes i and j. 

The clustering coefficient (Eq. 6) is a segregation 

metric that represents the fraction of triangles 

around a node and is equivalent to the fraction of 

the node's neighbors that are also neighbors of 

each other [13]:  
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in which ti is the number of triangles around a 

node i and Di the node degree. The betweenness 

centrality (Eq. 7) quantifies the network 

information flow by means of the shortest path 

between two nodes s and t (σst) and how many of 

these include node i (σst(i)) [13]:  
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Finally, eigenvector centrality evaluates nodes 

interaction considering the whole network 

structure, since it considers the connection of the 

neighbors of the node to quantify the centrality 

[14]. It can be defined as: 
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in which λ is the greatest eigenvalue of A and xj 

the respective eigenvectors. The computed 

metrics were used as features and were selected 



by the Davies-Bouldin index [15, 16]. Lastly, a 

least squares classifier [17] was used to 

discriminate the classes based on the best 22 

ranked attributes and the accuracy was obtained 

based on training and testing datasets as 

established in BCI Competition IV [8].  

After a preliminary investigation, the chosen 

correlation threshold was ρ = 0.16, which aimed 

to provide the best classification performance for 

Pearson scenario. In the STR framework, the best 

scenario was attained for ε = 2.2 and φ = 0.5 after 

exhaustive search, being the best Pearson and 

STR compared in this work. 

Results 

Table 1 and 2 show, respectively, the 

classification accuracy for Pearson correlation 

and STR approaches considering the 4 classes (1-

left hand, 2-right hand, 3-feet and 4-tongue) and 

each pair of classes for all subjects. 

 

Table 1. Classification accuracy considering all 4 

classes (All) and pairs of classes using Pearson 

correlation with ρ = 0.16. 

 

Subj. All 1-2 1-3 1-4 2-3 2-4 3-4 

S1 0.50 0.74 0.71 0.76 0.79 0.79 0.67 

S2 0.34 0.63 0.57 0.52 0.62 0.58 0.52 

S3 0.49 0.85 0.73 0.70 0.75 0.80 0.56 

S4 0.46 0.67 0.65 0.70 0.67 0.70 0.57 

S5 0.35 0.59 0.55 0.60 0.59 0.50 0.57 

S6 0.32 0.63 0.61 0.53 0.62 0.56 0.58 

S7 0.29 0.54 0.56 0.62 0.55 0.52 0.61 

S8 0.55 0.88 0.76 0.77 0.74 0.72 0.67 

S9 0.47 0.75 0.81 0.78 0.63 0.74 0.60 

 

Table 2. Classification accuracy considering all 4 

classes and pairs of classes using STR with ε = 

2.2 and φ = 0.5. 

 

Subj. All 1-2 1-3 1-4 2-3 2-4 3-4 

S1 0.60 0.83 0.93 0.91 0.96 0.97 0.62 

S2 0.33 0.50 0.57 0.53 0.67 0.63 0.60 

S3 0.67 0.94 0.88 0.90 0.80 0.92 0.64 

S4 0.45 0.62 0.73 0.75 0.69 0.69 0.53 

S5 0.33 0.57 0.60 0.61 0.56 0.65 0.62 

S6 0.33 0.55 0.63 0.58 0.60 0.58 0.58 

S7 0.35 0.52 0.56 0.61 0.63 0.63 0.63 

S8 0.70 0.94 0.83 0.79 0.79 0.86 0.77 

S9 0.67 0.89 0.90 0.94 0.74 0.74 0.83 

Table 3 shows the comparison between these 

strategies revealing the significant STR better 

performance (paired t-test, p-value = 0.04).  

Additionally, in order to identify the network 

metric that most influenced performance, the 

data were classified using each of the four 

metrics individually. Figure 1 shows the 

accuracy obtained by the metrics for each 

similarity measure. 

 

Table 3. Classification accuracy comparison 

between Pearson and STR strategies. 

 

 
Pearson STR 

mean ± st. deviation 0.42 ± 0.09 0.49 ± 0.16 

 

 

 

Figure 1. Accuracy obtained when separately 

using BC, CC, D and EC for each similarity 

measure. 

Also, the kappa value, which is a measure of 

performance that considers also the hit rate of a 

random classifier, was computed and compared 

to those obtained by the BCI Competition 

participants. Table 4 presents the results of the 

first three places and the results obtained by 

correlation and STR approaches.  

 

Table 4. Kappa obtained by participants of BCI 

Competition IV and by STR and Pearson 

correlation. 

 

 1
st 

2
nd 

3
rd 

STR Pearson 

mean kappa 0.57 0.52 0.31 0.33 0.23 

 

Discussion and Conclusions 

The idea of applying recurrence-based 

methods for BCI applications was introduced in 

[18]. In the present work, it has been shown that 

spatial recurrence between EEG electrodes can 

offer an interesting tool for estimating functional 



connectivity and distinguishing MI tasks in the 

BCI context, reaching an accuracy around 70% 

for the best subjects considering all  4 MI classes 

and higher than 90% for the best pair of classes 

for 4 subjects. 

Comparing the similarity measures evaluated, 

STR exhibited a significantly better performance 

than Pearson’s approach considering all subjects 

and classes (p-value = 0.04 – paired t-test). STR 

also obtained a kappa value of 0.33, showing a 

result superior to the third place of the BCI 

competition, which employed a complex 

combination of benchmark techniques (e.g. 

common spatial patterns, support vector 

machines), as reported in [8].  

Finally, this work has also shown that the EC 

measure presents the best discriminant potential. 

In fact, previous findings with a similar approach 

(but using a different method for estimating the 

adjacency matrix) found similar results [19, 20]. 

This strongly motivates applying EC features in 

online BCI systems, something that outlines a 

natural perspective of this study. 
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